Recent Trends in Drug Design and Discovery

Author:

Velmurugan Devadasan1,Pachaiappan R.2,Ramakrishnan Chandrasekaran3

Affiliation:

1. CAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai - 600025, India

2. Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur - 603203, Kanchipuram District, Tamilnadu, India

3. Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai - 600036, India

Abstract

Introduction:Structure-based drug design is a wide area of identification of selective inhibitors of a target of interest. From the time of the availability of three dimensional structure of the drug targets, mostly the proteins, many computational methods had emerged to address the challenges associated with drug design process. Particularly, drug-likeness, druggability of the target protein, specificity, off-target binding, etc., are the important factors to determine the efficacy of new chemical inhibitors.Objective:The aim of the present research was to improve the drug design strategies in field of design of novel inhibitors with respect to specific target protein in disease pathology. Recent statistical machine learning methods applied for structural and chemical data analysis had been elaborated in current drug design field.Methods:As the size of the biological data shows a continuous growth, new computational algorithms and analytical methods are being developed with different objectives. It covers a wide area, from protein structure prediction to drug toxicity prediction. Moreover, the computational methods are available to analyze the structural data of varying types and sizes of which, most of the semi-empirical force field and quantum mechanics based molecular modeling methods showed a proven accuracy towards analysing small structural data sets while statistics based methods such as machine learning, QSAR and other specific data analytics methods are robust for large scale data analysis.Results:In this present study, the background has been reviewed for new drug lead development with respect specific drug targets of interest. Overall approach of both the extreme methods were also used to demonstrate with the plausible outcome.Conclusion:In this chapter, we focus on the recent developments in the structure-based drug design using advanced molecular modeling techniques in conjunction with machine learning and other data analytics methods. Natural products based drug discovery is also discussed.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,General Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3