Systems Biology: A Powerful Tool for Drug Development

Author:

Rai Sneha1,Raj Utkarsh2,Varadwaj Pritish Kumar2

Affiliation:

1. Division of Biotechnology, Netaji Subhas Institute of Technology, University of Delhi, New Delhi, India

2. Department of Bioinformatics & Applied Sciences, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India

Abstract

The conventional way of characterizing a disease consists of correlating clinical symptoms with pathological findings. Although this approach for many years has assisted clinicians in establishing syndromic patterns for pathophenotypes, it has major limitations as it does not consider preclinical disease states and is unable to individualize medicine. Moreover, the complexity of disease biology is the major challenge in the development of effective and safe medicines. Therefore, the process of drug development must consider biological responses in both pathological and physiological conditions. Consequently, a quantitative and holistic systems biology approach could aid in understanding complex biological systems by providing an exceptional platform to integrate diverse data types with molecular as well as pathway information, leading to development of predictive models for complex diseases. Furthermore, an increase in knowledgebase of proteins, genes, metabolites from high-throughput experimental data accelerates hypothesis generation and testing in disease models. The systems biology approach also assists in predicting drug effects, repurposing of existing drugs, identifying new targets, facilitating development of personalized medicine and improving decision making and success rate of new drugs in clinical trials.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,General Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploration of the Key Genes Involved in Non-alcoholic Fatty Liver Disease and Possible MicroRNA Therapeutic Targets;Journal of Clinical and Experimental Hepatology;2024-07

2. Systems Biology and Human Diseases;Systems Biology Approaches: Prevention, Diagnosis, and Understanding Mechanisms of Complex Diseases;2024

3. Systems Biology Approaches for Precision Medicine;Systems Biology Approaches: Prevention, Diagnosis, and Understanding Mechanisms of Complex Diseases;2024

4. System biology approaches for drug repurposing;Progress in Molecular Biology and Translational Science;2024

5. Focus on the molecular mechanisms of cisplatin resistance based on multi-omics approaches;Molecular Omics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3