MCDCalc: Markov Chain Molecular Descriptors Calculator for Medicinal Chemistry

Author:

Carracedo-Reboredo Paula1,Corona Ramiro1,Martinez-Nunes Mikel1,Fernandez-Lozano Carlos2,Tsiliki Georgia3,Sarimveis Haralambos4,Aranzamendi Eider1,Arrasate Sonia1,Sotomayor Nuria2,Lete Esther1,Munteanu Cristian Robert2,González-Díaz Humbert5

Affiliation:

1. Department of Organic Chemistry II, University of the Basque Country UPV/EHU, 48940, Leioa, Bilbao, Spain

2. Group of Artificial Neural Networks and Adaptative Systems, Medical Imaging, and Diagnostic Radiology (RNASA-IMEDIR), Institute of Biomedical Research of Coruna (INIBIC), Hospital Complex of University of A Coruna (CHUAC), Sergas, University of Coruna (UDC), Xubias de arriba 84, 15006, A Coruna, Spain

3. Institute for the Management of Information Systems, ATHENA Research and Innovation Centre, 15125, Athens, Greece

4. School of Chemical Engineering, National Technical University of Athens, Zografou, Campus, 15780, Athens, Greece

5. IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain

Abstract

Aim: Cheminformatics models are able to predict different outputs (activity, property, chemical reactivity) in single molecules or complex molecular systems (catalyzed organic synthesis, metabolic reactions, nanoparticles, etc.). Background: Cheminformatics models are able to predict different outputs (activity, property, chemical reactivity) in single molecules or complex molecular systems (catalyzed organic synthesis, metabolic reactions, nanoparticles, etc.). Objective: Cheminformatics prediction of complex catalytic enantioselective reactions is a major goal in organic synthesis research and chemical industry. Markov Chain Molecular Descriptors (MCDs) have been largely used to solve Cheminformatics problems. There are different types of Markov chain descriptors such as Markov-Shannon entropies (Shk), Markov Means (Mk), Markov Moments (πk), etc. However, there are other possible MCDs that have not been used before. In addition, the calculation of MCDs is done very often using specific software not always available for general users and there is not an R library public available for the calculation of MCDs. This fact, limits the availability of MCMDbased Cheminformatics procedures. Methods: We studied the enantiomeric excess ee(%)[Rcat] for 324 α-amidoalkylation reactions. These reactions have a complex mechanism depending on various factors. The model includes MCDs of the substrate, solvent, chiral catalyst, product along with values of time of reaction, temperature, load of catalyst, etc. We tested several Machine Learning regression algorithms. The Random Forest regression model has R2 > 0.90 in training and test. Secondly, the biological activity of 5644 compounds against colorectal cancer was studied. Results: We developed very interesting model able to predict with Specificity and Sensitivity 70-82% the cases of preclinical assays in both training and validation series. Conclusion: The work shows the potential of the new tool for computational studies in organic and medicinal chemistry.

Funder

Spanish Ministry of Economy and Competitiveness

Basque Government

Instituto de Salud Carlos III

General Directorate of Culture, Education and University Management of Xunta de Galicia

Ministry of Economy and Competitiveness

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3