Effect of Driver Response on Efficiency of Vehicular Communication using Penalty Cost Function (EVCPCF)

Author:

Iskandarani Mahmoud Zaki

Abstract

Background and Objective: This study examines and takes into account three key timing factors that have an impact on the effectiveness of human-machine interfaces (HVI). A threshold-based mechanism is created to account for both cooperative driving and advanced vehicle control system (AVCS) scenarios. For AVCS and cooperative driving, the developed model takes into account on-board machine interface time, human interface time, and transmission time. Methods: A threshold function that represents the penalty cost of a slow driver reaction is presented in order to enable adaptive intelligence, enhance HVI design, and increase vehicle safety. The Penalty Cost Function (PCF) is used to make vehicle control systems intervene and take control in situations where the driver responds slowly to safety and warning messages. Additionally, this study demonstrates that AVCS-based vehicular systems are more responsive overall and are less impacted by the PCF function than cooperative systems. Results: The mathematical models created through this work allowed for a limiting efficiency value and capping for each driving scenario, according to comparative plots. This will improve the creation of more reliable control systems as part of a vehicle's mechatronics, impacting how vehicles communicate with one another in a cooperative setting. MATLAB simulation was used to verify the mathematical model. The simulation covered two limiting cases of 0.33 and 0.5 and used incrementing numbers of vehicles (10, 20, 30, 40, 50) to check the impact of increasing vehicle numbers on communication efficiency and examine whether both AVCS and AVCS with cooperative will have close levels and converge at limiting values. Conclusion: The successfully completed simulation demonstrated that throughput decreased as the number of vehicles increased, although in the limiting case, both scenarios and the driving system changed virtually by the same percentage.

Publisher

Bentham Science Publishers Ltd.

Subject

Transportation,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3