The AMPAR Antagonist Perampanel Regulates Neuronal Necroptosis via Akt/GSK3β Signaling After Acute Traumatic Injury in Cortical Neurons

Author:

Chen Tao1,Yang Li-Kun1,Zhu Jie1,Hang Chun-Hua2,Wang Yu-Hai1

Affiliation:

1. Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu 214044, China

2. Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210000, China

Abstract

Background: Perampanel is a highly selective and non-competitive α-amino-3-hydroxy- 5 -methyl-4-isoxazole propionate (AMPA) receptor (AMPAR) antagonist, which has been licensed as an orally administered antiepileptic drug in more than 55 countries. Recently, perampanel was found to exert neuroprotective effects in hemorrhagic and ischemic stroke models. Objective: In this study, the protective effect of perampanel was investigated. Methods: The protective effect of perampanel was investigated in an in vitro Traumatic Neuronal Injury (TNI) model in primary cultured cortical neurons. Results: We found that perampanel significantly preserved morphological changes, attenuated lactate dehydrogenase (LDH) release and inhibited caspase-3 activation after TNI. The TNI-induced necroptosis, as evidenced by flow cytometry, was markedly reduced by perampanel treatment. The results of western blot showed that perampanel decreased the expression and phosphorylation of the necroptotic factors, receptor protein interacting kinase 1 (RIPK1) and RIPK3. In addition, treatment with perampanel increased the phosphorylation of Akt and GSK3β in a time-dependent manner up to 24 h after TNI. Treatment with the Akt inhibitor LY294002 partially reversed the protective effects of perampanel. Conclusion: Our present data suggest that necroptosis plays a key role in the pathogenesis of neuronal death after TNI, and that perampanel might have therapeutic potential for patients with Traumatic Brain Injury (TBI).

Funder

Guangzhou Institute of Pediatrics/ Guangzhou Women and Children’s Medical Center

Natural Science Foundation of Guangdong Province, China

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3