MCC950 Reduces Neuronal Apoptosis in Spinal Cord Injury in Mice

Author:

He Ning1,Zheng Xiaohe1,He Teng1,Shen Gerong1,Wang Kunyu1,Hu Jue2,Zheng Mingzhi2,Ding Yueming3,Song Xinghui4,Zhong Jinjie1,Chen Ying-Yung1,Wang Lin-Lin5,Yueliang Shen1

Affiliation:

1. Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China

2. Department of Pharmacology, Hangzhou Medical College, Hangzhou, Zhejiang, China

3. School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China

4. Core Facilities, Zhejiang University School of Medicine, Hangzhou, China

5. Department of Basic Medicine Sciences and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China

Abstract

Background: Traumatic Spinal Cord Injury (SCI) is a severe condition usually accompanied by an inflammatory process that gives rise to uncontrolled local apoptosis and a subsequent unfavorable prognosis. One reason for this unfavorable outcome could be the activation of the NLRP3 inflammasome. Objective: MCC950 is a specific inhibitor of NLRP3 that further inhibits the formation of the NLRP3 inflammasome. The purpose of this study was to determine whether the NLRP3 inflammasome was associated with the severity of local apoptosis and whether MCC950 could prevent neuronal apoptosis following SCI. Methods: In this study, primary cortical neurons were cultured in vitro. With or without pretreatment/ posttreatment with MCC950, neurons were subjected to Oxygen-Glucose Deprivation (OGD) for 2 h and then reperfusion for 20 h. Immunofluorescence was used to determine the expression of NLRP3, ASC, and cleaved caspase-1 in neurons. In vivo, SCI model mice were established with a 5 g weight-drop method. MCC950 was intraperitoneally injected at 0, 2, 4, 6, 8, 10, and 12 days after SCI. Basso Mouse Scale (BMS) scores and footprint assays were used to assess motor function. Paw withdrawal threshold and tail-flick latency were used to assess somatosensory function. H&E, Nissl, and TUNEL staining were used to measure histological changes and apoptosis at 3 days after SCI, and scar formation was observed by Masson staining and GFAP immunohistochemical analysis at 28 days after SCI. Results: Immunofluorescence analysis confirmed that MCC950 inhibited OGD-induced activation of the NLRP3 inflammasome in neurons. Behavioral tests, Masson staining, and GFAP immunohistochemical analysis showed that MCC950-treated mice had improved neuronal functional recovery and reduced scar formation at 28 days after SCI. H&E, Nissl, and TUNEL staining confirmed that there were more living neurons and fewer apoptotic neurons in MCC950-treated mice than control mice at 3 days after SCI. Conclusion: These results reveal that MCC950 exerts neuroprotective effects by reducing neuronal apoptosis, preserving the survival of the remaining neurons, attenuating the severity of the damage, and promoting the recovery of motor function after SCI.

Funder

Zhejiang Provincial Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3