Dyngo-4a induces neuroblastoma cell differentiation through the AKT and ERK1/2 pathway

Author:

Huang Jinxi12,Liu Renyu2,Zhou Yi23,Zheng Si24,Xu Jihong25,Liu Lilian6,Grothusen John2

Affiliation:

1. Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University,Zhengzhou, Henan, China.

2. Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, 336 John Morgan building, 3620 Hamilton Walk, Philadelphia, PA 19104

3. Department of Anesthesiology, The Affiliated Cancer Hospital of Zhengzhou University,Zhengzhou, Henan, China.

4. Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital

5. Department of Anesthesiology, Shenzhen University General Hospital, Shenzhen, China

6. School of Art and Science, University of Pennsylvania, 336 John Morgan building, 3620 Hamilton Walk, Philadelphia, PA 19104

Abstract

Aim: The aim of the study is to check whether dyngo-4a can inhibit neuroblastoma (NB) proliferation and induce NB cell differentiation Background: Dynamin plays a role in regulating neurotransmission, signaling pathways, nutrient uptake, and pathogen infection, enhancing cell proliferation, tumor invasion, and metastasis. Studies have reported that dyngo-4a, a dynamin inhibitor, can be used to identify potential biomarkers and promising novel therapeutic targets for cancer treatment. Objective: To our knowledge, no published reports are showing that dynamin inhibitors can reduce NB cell proliferation and induce differentiation. In this study, we report that dyngo-4a can inhibit NB proliferation and induce NB cell differentiation. Methods: In this study, mouse neuroblastoma (Neuro-2a) cells were cultured in the presence or absence of dyngo-4a or retinoic acid (RA), or in the presence of both dyngo-4a and RA, or in the presence of sequential administration of dyngo-4a and RA to compare the effects on the inhibition of cell proliferation and effects on neuroblastoma cell differentiation induction. The neural cell markers, Nestin and Tuj 1 (Neuron-specific class III beta-tubulin), were used to demonstrate that the differentiated cells have neuronal cell features. The phosphorylation of Protein Kinase B (AKT), extracellular signal-regulated kinases1/2 (ERK1/2), and epidermal growth factor receptor (EGFR) were determined to examine the potential mechanisms of induced differentiation. Results: Dyngo-4a or RA or dyngo-4a with subsequent RA administration induced Neuro-2a cell differentiation. However, RA with subsequent dyngo-4a administration results in almost total death of the Neuro-2a cells. The differentiation rate induced by dyngo-4a was significantly higher than the rate by RA treatment (72.5 ± 1.4 % vs 52.9 ± 3.1% with neuron features, P<0.05; 39.0 ± 0.8 % vs 29.9 ± 1.8 % for axons under light microscopy, p<0.05). The differentiation rate of cells treated with dyngo-4a first, followed by RA, was greater than when they were added together (74.8 ± 3.8 % vs 10.6 ± 3.6 %; 45.5 ± 1.6 % vs 12.4 ± 0.6 %, p<0.01). Co-administration of dyngo-4a and RA at the same time diminished differentiation efficacy significantly. Dyngo-4a induced Neuro-2a cell differentiation and increased Tuj-1 positive staining by the 6th day post- treatment. Dyngo-4a also inhibited Neuro-2a cell proliferation in a dose-dependent manner. Regarding the mechanism, dyngo-4a treatment showed a significant increase in p-AKT and p-ERK1/2 but not in p-EGFR. Conclusion: At a level comparable to RA, dynamin inhibition with dyngo-4a lowers proliferation and causes differentiation of Neuro-2a mouse NB cells in vitro. The AKT pathway is activated by dynago-4a, which results in differentiation. The combination of RA with dynago-4a reduces the efficiency of differentiation. The application of dynago-4a followed by RA, on the other hand, enhances the differentiating effect, implying alternative mechanistic roles in the process.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3