Lithium Cholesterol Sulfate: A Novel and Potential Drug for Treating Alzheimer’s Disease and Autism Spectrum Disorder

Author:

Hu Weiqiang1,Zhao Menghua2,Lian Junrong3,Li Dandan4,Wen Jinhua2,Tan Jun5

Affiliation:

1. Department of GCP/Psychosomatic Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China | College of Pharmacy, Nanchang University, Nanchang, 330006, China

2. Department of GCP/Psychosomatic Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China

3. Huankui College, Nanchang University,

4. Huankui College, Nanchang University, Nanchang, 330006, China

5. Key Laboratory of Endemic and Ethnic Diseases, the Ministry of Education, Guizhou Medical University, Guiyang,550004, China

Abstract

Background and Objective: Recent studies have shown that lithium treatment can reduce symptoms of Alzheimer’s disease (AD) and Autism Spectrum Disorder (ASD). However, the present lithium salts clinically available have serious short-term and long-term side effects which requires frequent monitoring of blood chemistry and plasma lithium levels so as to avoid toxicity. Consequently, there is a demand for a safer and more effective lithium formulation to treat these diseases. Methods: Hence, we firstly synthesized lithium cholesterol sulfate (LiCS) and compared its pharmacological effects with that of lithium chloride (LiCl) and sodium cholesterol sulfate (NaCS) on markers of neurodegenerative disease in cell cultures. Results: LiCS was more potent than LiCl in increasing inhibitory GSK3β (Ser9) phosphorylation (pGSK3β) in both CHO and SH-SY5Y cells. These agents dose-dependently increased pGSK3β, starting at 10 µM for LiCS and 60µM for LiCl and maximally by approximately 100% at 60 µM for LiCS and 1.25 mM for LiCl, without altering total GSK3β levels. In HEK293/tau cells, LiCS reduced tau (Thr231) phosphorylation (ptau) starting at 10 µM and maximally by 63% at 40 µM without altering total tau levels, but ptau levels were not altered by LiCl at any dose between 60 µM and 1.25 mM. In BV2 cells, LiCS and LiCl decreased LPS-induced TNFα levels, starting at 20 µM for LiCS and 5 mM for LiCl, and maximally by approximately 30% at 80 µM for LiCS and 20 mM for LiCl. NaCS at any dose between 5 and 90 µM did not alter pGSK3β, ptau or LPS-induced TNFα. Conclusion: LiCS may become a new drug with good pharmacological potential for the treatment of neurodegenerative disorders such as AD and ASD by allowing lithium to more readily access intracellular pathological processes.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3