Recent Trends in Nano-Particulate Carriers for the Diagnosis and Treatment of Alzheimer’s Disease

Author:

Yadav Awesh K.1ORCID,Mazahir Farhan1ORCID

Affiliation:

1. Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, India

Abstract

Background: Alzheimer's disease (AD) is characterized by the presence of aggregated amyloid fibers, neurodegeneration, and loss of memory. Although "Food and Drug Administration" (FDA) approved drugs are available to treat AD, drugs that target AD have limited access to the brain and cause peripheral side effects. These peripheral side effects are the results of exposure of peripheral organs to the drugs. The blood-brain barrier (BBB) is a very sophisticated biological barrier that allows the selective permeation of various molecules or substances. This selective permeation by the BBB is beneficial and protects the brain from unwanted and harmful substances. However, this kind of selective permeation hinders the access of therapeutic molecules to the brain. Thus, a peculiar drug delivery system (nanocarriers) is required. Objective: Due to selective permeation of the “blood-brain barrier,” nanoparticulate carriers may provide special services to deliver the drug molecules across the BBB. This review article is an attempt to present the role of different nanocarriers in the diagnosis and treatment of Alzheimer's disease. Method: Peer-reviewed and appropriate published articles were collected for the relevant information. Result: Nanoparticles not only traverse the blood-brain barrier but may also play roles in the detection of amyloid β, diagnosis, and drug delivery. Conclusion: Based on published literature, it could be concluded that nano-particulate carriers may traverse the blood-brain barrier via the transcellular pathway, receptor-mediated endocytosis, transcytosis, and may enhance the bioavailability of drugs to the brain. Hence, peripheral side effects could be avoided.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3