2-Deoxy-D-Ribose, a Downstream Mediator of Thymidine Phosphorylase, Regulates Tumor Angiogenesis and Progression

Author:

Nakajima Yuichi,Madhyastha Radha,Maruyama Masugi1

Affiliation:

1. Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Kihara 5200, Kiyotake-cho, Miyazaki 8891692, Japan., Japan

Abstract

Angiogenesis plays an important role in tumor metastasis and progression, and thus inhibiting angiogenesis is a promising strategy for treatment of cancer. However, tumor-associated angiogenesis is influenced by various angiogenic factors in the tumor microenvironment. Thymidine phosphorylase (TP, EC 2. 4. 2. 4), an enzyme involved in the reversible conversion of thymidine to thymine, is an important mediator of angiogenesis, tumorigenicity, metastasis and invasion. The angiogenic effect of TP requires the enzymatic activity of TP. TP activity is expressed at higher levels in a wide variety of solid tumors than in adjacent non-neoplastic tissue. The tumor microenvironment (hypoxia, acidosis) regulates the expression of TP, and TP expression in tumor tissue shows significant correlation with microvessel density and poor prognosis. 2-Deoxy-D-ribose (D-dRib), one of the degradation products of thymidine generated by TP activity, promotes angiogenesis and the chemotactic activity of endothelial cells and also confers resistance to hypoxia-induced apoptosis in some cancer cell lines. These findings suggest that D-dRib is a downstream mediator of TP function. 2-Deoxy-L-ribose, a stereoisomer of D-dRib, can inhibit D-dRibs anti-apoptotic effects and suppress metastasis and invasion of TP-expressing tumors in mice. Although the mechanism of action of D-dRib is still unknown, the physiological activities of D-dRib have recently been reported by several groups. We review the role of D-dRib in tumor progression and discuss inhibition of D-dRib as a promising approach for chemotherapy of various tumors.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3