A Novel IDPC using Suitable Controllers (Robust and Intelligent Controllers)

Author:

CHEBABHI Ali1

Affiliation:

1. ICEPS,Sidi-Bel-Abbes Mohamed El Bachir El Ibrahimi University, BBA, Algeria

Abstract

This chapter presents an improved Indirect power control (compared to the conventional one illustrated in chapter: 03) based on robust and suitable controllers (Robust and Intelligent controllers) to control the d-q axes currents (Ird and Irq) respectively. In order to overcome the speed/efficiency trade-off and divergence from peak power under fast variation of wind speed; three intelligent controllers (based on, T1-FLC, T2-FLC and NFC) are proposed to control the rotor direct and quadrature currents (Ird and Irq) instead of PID controllers, for grid-connected doubly fed induction generator (DFIG). The same wind-turbine (DFIG (4kW) and turbine (4.5 kW)) used in last chapter will be developed again in order to make a comparative study between the wind-system performance algorithms. The SVM strategy (to ensure the fixed switching frequency and to minimize the harmonics) is used in RSC for switching signals generation to control the inverter. In this chapter, mathematical model of each proposed controller is described in detail. The MPPT strategy is also developed in the three proposed algorithms in order to extract the maximum wind power by keeping the reactive power equal to zero value. The main aim of the proposed control is to improve the wind system performance despite the sudden wind speed variation and the DFIG’s parameter variation in transient and steady states. The simulation results using the Matlab/Simulink environment (under three proposed modes and using robustness tests) show that the intelligent controller offered high power quality in spite of wind-speed variation have superior dynamic performance and are more robust during parameter variation.

Publisher

BENTHAM SCIENCE PUBLISHERS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3