Recent Progress in Graphene Derivatives/Metal Oxides Binary Nanocomposites Based Chemi-resistive Sensors for Disease Diagnosis by Breath Analysis

Author:

Kalidoss Ramji1ORCID,Surya Velappa Jayaraman2ORCID,Sivalingam Yuvaraj3ORCID

Affiliation:

1. Department of Biomedical Engineering, Bharath Institute of Higher Education and Research, Selaiyur, 600073, Tamil Nadu,, India

2. Department of Physics and Nanotechnology, Novel, Advanced, and Applied Materials (NAAM) Laboratory, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu,, India

3. Department of Physics and Nanotechnology, Laboratory for Sensors, Energy and Electronic Devices (Lab SEED), SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu 603203,, India

Abstract

Background:: The scientific and clinical interest of breath analysis for non-invasive disease diagnosis has been focused by the scientific community over the past decade. This was due to the exhalation of prominent volatile organic compounds (VOCs) corresponding to the metabolic activities in the body and their concentration variation. To identify these biomarkers, various analytical techniques have been used in the past and the threshold concentration was established between a healthy and diseased state. Subsequently, various nanomaterials-based gas sensors were explored for their demand in quantifying these biomarkers for real-time, low cost and portable breathalyzers along with the essential sensor performances. Methods:: We focus on the classification of graphene derivatives and their composites’ gas sensing efficiency for the application in the development of breathalyzers. The review begins with the feasibility of the application of nanomaterial gas sensors for healthcare applications. Then, we systematically report the gas sensing performance of various graphene derivatives/semiconductor metal oxides (SMO) binary nanocomposites and their optimizing strategies in selective detection of biomarkers specific to diseases. Finally, we provide insights on the challenges, opportunity and future research directions for the development of breathalyzers using other graphene derivatives/SMO binary nanocomposites. Results:: On the basis of these analyses, graphene and its derivatives/metal oxides based binary nanocomposites have been a choice for gas sensing material owing to their high electrical conductivity and extraordinary thickness-dependent physicochemical properties. Moreover, the presence of oxygen vacancies in SMO does not only alter the conductivity but also accelerates the carrier transport rate and influence the adsorption behavior of target analyte on the sensing materials. Hence researchers are exploring the search of ultrathin graphene and metal oxide counterpart for high sensing performances. Conclusion:: Their impressive properties compared to their bulk counterpart have been uncovered towards sensitive and selective detection of biomarkers for its use in portable breathalyzers.

Publisher

Bentham Science Publishers Ltd.

Subject

Analytical Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3