Importance and Analytical Perspective of Green Synthetic Strategies of Copper, Zinc, and Titanium Oxide Nanoparticles and their Applications in Pathogens and Environmental Remediation

Author:

Panhwar Sagar1,Buledi Jamil A.1,Mal Dadu1,Solangi Amber R.1,Balouch Aamna1,Hyder Ali1

Affiliation:

1. National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080 Jamshoro, India

Abstract

Background: Nanotechnology is a promising field of science which deals with the production and utilization of material under nanoscale dimensions. The nanoscale regime provides exceptional applications in various fields of science due to its large surface to volume ratio and many valuable properties. Hence, the production and use of nanomaterials are the prominent areas of modern research. Amongst the nanomaterials, metal oxide NPs have gained much attention due to their vast number of applications in different areas, including electrochemical applications, dye degradation, catalysis, and are known to be the exceptional entities in the battle against different pathogens. The metal oxides are viably synthesized through chemical methods that require the use of many noxious chemicals. Henceforth, it is the demand of the modern world to carry out research on the synthesis of metal oxide nanomaterials through eco-friendly, greener, and non-toxic routes. Thus, various green methods are employed to engineer the metal oxide NPs by using different greener, cheaper, and eco-friendly sources, employing the use of plant extracts, bacteria, fungi and other biological bodies. The present review covered the green synthesis of CuO, ZnO, TiO2 NPs and their applicability towards different pathogens and environmental remediation reported from the year 2015 to date. Objective: The exceptional catalytic properties, environmental, and anti-microbial applications of metal oxide, especially CuO, ZnO, TiO2, are the main highlights of this review articles. The most cost-effective and greener routes for the synthesis of CuO, ZnO, TiO2, are discussed in the present review. To date, various green synthetic methods for the preparation of mentioned nanoparticles and their applicability towards different pathogens and degradation of different hazardous dyes with some electrochemical applications has been thoroughly covered in this review. Conclusion: The biosynthesis of metal oxide NPs using greener and eco-friendly approaches have been the attentive area in the last decade. Green synthesis requires chemical-free active components from biological sources, which act as both the reducing and stabilizing agent for the size and shapecontrolled production of NPs. The future vision of bacterial, fungal, and plant-mediated production of NPs includes the postponement of laboratory-based work to a large industrial scale, exposition of different phytochemicals involved in the biosynthesis of NPs using bioinformatics techniques and stemming the real mechanism involved in preventing the growth of pathogenic bacteria, fungi, and algae. The plant-mediated NPs can have diverse applications in the arena of pharmaceutical, food, and cosmetic industries, and thus, became a vital area of modern research.

Publisher

Bentham Science Publishers Ltd.

Subject

Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3