Affiliation:
1. National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080 Jamshoro, India
Abstract
Background:
Nanotechnology is a promising field of science which deals with the production
and utilization of material under nanoscale dimensions. The nanoscale regime provides
exceptional applications in various fields of science due to its large surface to volume ratio and
many valuable properties. Hence, the production and use of nanomaterials are the prominent areas
of modern research. Amongst the nanomaterials, metal oxide NPs have gained much attention due
to their vast number of applications in different areas, including electrochemical applications, dye
degradation, catalysis, and are known to be the exceptional entities in the battle against different
pathogens. The metal oxides are viably synthesized through chemical methods that require the use
of many noxious chemicals. Henceforth, it is the demand of the modern world to carry out research
on the synthesis of metal oxide nanomaterials through eco-friendly, greener, and non-toxic routes.
Thus, various green methods are employed to engineer the metal oxide NPs by using different
greener, cheaper, and eco-friendly sources, employing the use of plant extracts, bacteria, fungi and
other biological bodies. The present review covered the green synthesis of CuO, ZnO, TiO2 NPs
and their applicability towards different pathogens and environmental remediation reported from
the year 2015 to date.
Objective:
The exceptional catalytic properties, environmental, and anti-microbial applications of
metal oxide, especially CuO, ZnO, TiO2, are the main highlights of this review articles. The most
cost-effective and greener routes for the synthesis of CuO, ZnO, TiO2, are discussed in the present
review. To date, various green synthetic methods for the preparation of mentioned nanoparticles
and their applicability towards different pathogens and degradation of different hazardous dyes
with some electrochemical applications has been thoroughly covered in this review.
Conclusion:
The biosynthesis of metal oxide NPs using greener and eco-friendly approaches have
been the attentive area in the last decade. Green synthesis requires chemical-free active components
from biological sources, which act as both the reducing and stabilizing agent for the size and shapecontrolled
production of NPs. The future vision of bacterial, fungal, and plant-mediated production
of NPs includes the postponement of laboratory-based work to a large industrial scale, exposition
of different phytochemicals involved in the biosynthesis of NPs using bioinformatics techniques
and stemming the real mechanism involved in preventing the growth of pathogenic bacteria, fungi,
and algae. The plant-mediated NPs can have diverse applications in the arena of pharmaceutical,
food, and cosmetic industries, and thus, became a vital area of modern research.
Publisher
Bentham Science Publishers Ltd.