Novel Salt-Assisted Liquid-Liquid Microextraction Technique for Environmental, Food, and Biological Samples Analysis Applications: A Review

Author:

Pasupuleti Raghavendra Rao1,Gurrani Swapnil2,Tsai Pei-Chien1,Ponnusamy Vinoth Kumar3ORCID

Affiliation:

1. Department of Medicinal and Applied Chemistry, Nano and Green Analytical Lab, Kaohsiung Medical University (KMU), Kaohsiung City-807,, Taiwan

2. Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City-807,, Taiwan

3. Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City-804,, Taiwan

Abstract

Background:: Sample preparation has gained significant recognition in the chemical analysis workflow. Substantial efforts have been made to simplify the comprehensive process of sample preparation that is focused on green sample preparation methodology, including the miniaturization of extraction method, elimination of the sample pre-treatment as well as the post-treatment steps, elimination of toxic as well as hazardous organic solvent consumption, reduction in sample volume requirements, reducing the extraction time, maximization of the extraction efficiency and possible automation. Methods:: Among various microextraction processes, liquid-phase microextraction (LPME) is most abundantly used in the extraction of the target analytes. The salting-out phenomenon has been introduced into the LPME procedure and has been raised as a new technique called the ‘Salt-Assisted Liquid-Liquid Microextraction (SALLME)’. The principle is based on decreasing the solubility of less polar solvent or analyte with an increase in the concentration of the salt in aqueous solution leading to two-phase separation. Conclusion:: SALLME proved to be a simple, rapid, and cost-effective sample preparation technique for the efficient extraction and preconcentration of organic and inorganic contaminants from various sample matrices, including environmental, biological, and food samples. SALLME exhibits higher extraction efficiency and recovery and compatible with multiple analytical instruments. This review provides an overview of developments in SALLME technique and its applications to till date.

Publisher

Bentham Science Publishers Ltd.

Subject

Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3