Microfluidics as an Emerging Platform for Tackling Antimicrobial Resistance (AMR): A Review

Author:

Hassan Sammer-ul1,Zhang Xunli1

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom

Abstract

Background: Antimicrobial resistance (AMR) occurs when microbes become resistant to antibiotics causing complications and limited treatment options. AMR is more significant where antibiotics use is excessive or abusive and the strains of bacteria become resistant to antibiotic treatments. Current technologies for bacteria and its resistant strains identification and antimicrobial susceptibility testing (AST) are mostly central-lab based in hospitals, which normally take days to weeks to get results. These tools and procedures are expensive, laborious and skills based. There is an ever-increasing demand for developing point-of-care (POC) diagnostics tools for rapid and near patient AMR testing. Microfluidics, an important and fundamental technique to develop POC devices, has been utilized to tackle AMR in healthcare. This review mainly focuses on the current development in the field of microfluidics for rapid AMR testing. Method: Due to the limitations of conventional AMR techniques, microfluidic-based platforms have been developed for better understandings of bacterial resistance, smart AST and minimum inhibitory concentration (MIC) testing tools and development of new drugs. This review aims to summarize the recent development of AST and MIC testing tools in different formats of microfluidics technology. Results: Various microfluidics devices have been developed to combat AMR. Miniaturization and integration of different tools has been attempted to produce handheld or standalone devices for rapid AMR testing using different formats of microfluidics technology such as active microfluidics, droplet microfluidics, paper microfluidics and capillary-driven microfluidics. Conclusion: Current conventional AMR detection technologies provide time-consuming, costly, labor-intensive and central lab-based solutions, limiting their applications. Microfluidics has been developed for decades and the technology has emerged as a powerful tool for POC diagnostics of antimicrobial resistance in healthcare providing, simple, robust, cost-effective and portable diagnostics. The success has been reported in research articles; however, the potential of microfluidics technology in tackling AMR has not been fully achieved in clinical settings.

Funder

Economic and Social Research Council UK

Publisher

Bentham Science Publishers Ltd.

Subject

Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3