Application of Oxides Electrodes (Ru, Ti, Ir and Sn) for the Electrooxidation of Levofloxacin

Author:

Forti Juliane C.1,Rocha Robson S.2,De Andrade Adalgisa R.3,Lanza Marcos R.V.4

Affiliation:

1. Sao Paulo State University (UNESP), School of Sciences and Engineering, 17602-496, Tupa, SP, Brazil

2. University of Sao Paulo (USP), School of Engineering, 12602-810, Lorena, SP, Brazil

3. University of Sao Paulo (USP), FFCLRP, Chemistry Department, 14040-901, Ribeirao Preto, SP, Brazil

4. University of Sao Paulo (USP), Institute of Chemistry, 13560-970, Sao Carlos, SP, Brazil

Abstract

Background: The main sources of antibiotic pollution are industries, hospitals, and urban effluents, as well as wastewater from farms that use antibiotics for veterinary purposes. Fluoroquinolones are very useful as antimicrobial agents and are probably among the most important classes of synthetic antibiotics in veterinary and human medicines worldwide. Despite this relevance, studies on the analysis of fluoroquinolones in wastewaters and alternative processes to degrade these compounds, and their effects on human health and environment are scarce. Here, we prepared different oxide electrodes (Ti/Ru0.3Ti0.7O2, Ti/Ru0.3Sn0.7O2, Ti/Ir0.3Ti0.7O2, and Ti/Ir0.3Sn0.7O2) and used them in the electrochemical oxidation of levofloxacin, an antibiotic belonging to the class of fluoroquinolones. Methods: The oxide electrodes with nominal compositions: Ti/Ru0.3Ti0.7O2, Ti/Ru0.3Sn0.7O2, Ti/Ir0.3Ti0.7O2, and Ti/Ir0.3Sn0.7O2 were prepared by the traditional method. Briefly, the precursor solution was dissolved in isopropanol and applied by brushing on both sides of the titanium substrate. The resulting material was thermally decomposed at 400°C for 5 min in a preheated oven, which was followed by cooling. This procedure was repeated until the desired oxide thickness was achieved (2 mm). Using the electrochemical cell, the electrolysis experiments were carried out by applying current densities of 25, 50, and 100 mA cm-2 on the oxide electrodes for 60 min. During this experiment, aliquots were removed at times: 5, 10, 15, 20, 30, 45 and 60 min for quantification. Levofloxacin was quantitatively determined by High-Performance Liquid Chromatography (HPLC). Results: The catalytic efficiency of different electrodes is measured as the yield of levofloxacin degradation, which in most cases reaches 50% within 1 h of electrolysis, regardless of the applied current. The electrodes bearing ruthenium afford the same % residual levofloxacin (18%) after 1 h of electrolysis under 100 mA cm-2. The electrodes that contain iridium provide similar results at all the applied currents, being less efficient as compared to the ruthenium-based electrodes. The electrode Ti/Ru0.3Sn0.7O2 presented the highest levofloxacin degradation value (levofloxacin residual is 8% at 50 mA cm-2) and levofloxacin removal rate was calculated considering order 1 kinetics (-lnC/Co=kt), for each of the applied current densities reaching 4.4, 4.9 and 4.5 mg L-1min-1 for the experiments at 25, 50, 100 mA cm-2. Therefore, the Ti/Ru0.3Sn0.7O2 electrode affords the highest yield and the best cost/benefit ratio. Conclusion: In this work, electrodes were prepared with different compositions to study the catalytic efficiency in the degradation of levofloxacin, an antibiotic belonging to the class of fluoroquinolones. The mixed oxide electrodes prepared herein have proven to be an efficient alternative to treat effluents contaminated with organic compounds. The electrode containing RuO2 and SnO2 oxidizes levofloxacin the most efficiently, reaching a removal efficiency of 92% (4.9 mg L-1 min-1) under 50 mA cm-2. Hence, the substitution of Ti for Sn generates better degradation efficiency.

Funder

São Paulo Research Foundation

National Council for Scientific and Technological

Publisher

Bentham Science Publishers Ltd.

Subject

Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3