Affiliation:
1. Biomedical Engineering Department, Başkent University, Ankara, Turkey
Abstract
Background:
Biosensors are analytical devices that include a sample-delivery approach between a
biological recognition element and a transducer required to convert the physicochemical change produced from the
interaction of biological molecules-receptor interaction into signal. The immunosensor is a special type of biosensors that
includes an antibody as a biorecognition element to detect analyte as antigens. In mass-sensitive sensors, antigen-antibody
interactions can be specified by measuring the frequency change and most commonly knowns are surface acoustic wave,
bulk acoustic wave, quartz crystal microbalance and microcantilevers.
Methods:
Different methods for antibody immobilization including functionalization of the transducer surface with
specific groups have been reported for antibody immobilization. This stage affects the limit of detection and overall
performance. In this review, perspectives on immobilization strategies of mass sensitive immunosensors according to
transducer types will be presented. The choice of immobilization methods and their impact on performance in terms of
capture molecule loading, orientation and signal improvement is will also be discussed.
Results:
One of the most critical point during configuration of the biorecognition layer is to improve the sensitivity.
Therefore, we initially focused on comparisons of the antibody immobilization strategies in the biorecognition layer in
terms of mass load level and high sensitivity.
Conclusion:
The lack of significant data on the mass accumulations up to the functionalization and antibody
immobilization steps, which are the basis of immusensor production, has been identified. However, mass sensitive
immunosensors have the potential to become more common and effective analytical devices for many application areas.
Publisher
Bentham Science Publishers Ltd.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献