Affiliation:
1. Department of Applied Chemistry, Z.H. College of Engineering and Technology, Aligarh Muslim University, Aligarh - 202 002, India
2. Research and Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, Haryana - 121 007, India
Abstract
Background:
Dye contamination of natural water system is a severe problem due to the
considerable enhancement in the industrial activities. As the dyes are highly visible, nonbiodegradable,
and toxic in nature, they are considered as a severe source of water pollution. Therefore,
it is imperative to develop an inexpensive, simple, effective, and easy technique for their elimination
from wastewater.
Methods:
Luffa aegyptiaca peel (LuAP), kitchen waste was exploited as a low-priced biosorbent for
the adsorptive elimination of cationic methylene blue (MB) dye. The influence of several batch parameters,
i.e., adsorbent dose, pH of the solution, initial dye concentration, adsorbate/adsorbent contact
time, and temperature were optimized for maximum adsorption of MB from aqueous media. Furthermore,
thermodynamics, kinetics, and isotherm studies were also carried out in order to comprehend
the dominant mechanism for the adsorptive elimination of MB.
Results:
The kinetic data for the adsorption of MB onto the LuAP followed closely by the pseudosecond-
order (PSO) kinetics, and the adsorption equilibrium data were observed to be well demonstrated
by Langmuir isotherm. The equilibrium was attained in 180 min with maximum sorption capacity
of 52.63 mg/g at an adsorbent dose of 3 g/L, pH of 7, and temperature of 303 K. Thermodynamic
study reveals that the removal of MB by LuAP is spontaneous and endothermic.
Conclusion:
It has been concluded that LuAP can be efficiently utilized for the confiscation of cationic
MB dye from polluted water.
Publisher
Bentham Science Publishers Ltd.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献