Challenging MXene-based Nanomaterials and Composite Membranes for Water Treatment

Author:

Wang Ling1,Xu Zehai2,Fu Delong3,Zhang Guoliang2ORCID

Affiliation:

1. Hangzhou Special Equipments Inspection and Research Institute, Hangzhou, China

2. Institute of Oceanic and Environmental Chemical Engineering, Zhejiang University of Technology, Hangzhou, China

3. Zhejiang Supermax Environment Engineering Co., Ltd, Hangzhou, China

Abstract

Background: The development of new emerging nanomaterials for water treatment has attracted more and more interests recently. MXenes is a generic term for a series of new two-dimensional (2D) transition metal carbides and carbonitrides materials which have graphene-like structure. As a new type of 2D lamellar nanomaterial, many researches have focused on the design and synthesis of MXene-based nanomaterials owing to their large number of inter-layer void with the two-dimensional stacking structure, large specific surface area, rich and adjustable surface functional groups and strong hydrophilicity. On account of their unique properties, related discussion and potential of 2D MXenes nanomaterials for membrane separation and water treatment applications are provided. Objective: The goal of this paper is to review new emerging 2D MXenes nanomaterials for the fabrication of various composite membranes and related applications for water treatment. Method: In this review, the design and synthesis of MXene-based composite membranes for water treatment was extensively discussed. Results: Membrane separation technology is an effective approach for solving water pollution problem due to its low energy consumption, environment friendly and easy operation. MXene-based membranes with different molecular sieving behaviors for small organic molecules and ions and corresponding applications in water purification and desalination were discussed. Conclusion: Although composite membranes constructed by 2D MXenes nanomaterials can be prepared to achieve high water flux and satisfactory rejection, most researches focused on the exploration of membrane formation with multi-layered compound or few-layered MXenes. In the near future, the functional properties of the MXene itself should be paid more attention for development of various novel membranes.

Funder

Postdoctoral Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3