Photocatalytic Inactivation of Bioaerosols: A Short Review on Emerging Technologies

Author:

Riaz Nadia1ORCID,Khan Muhammad Saqib1ORCID,Bilal Muhammad1ORCID,Ullah Sami2,Al‐Sehemi Abdullah G.2ORCID

Affiliation:

1. Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan

2. Department of Chemistry, King Khalid University, Abha, Saudi Arabia

Abstract

Background: Formation of the microbial colonies in the wet and damp environment affects the indoor air quality thus posing severe threats to human health. Health problems or Building- associated illness (any disease or infection) caused by being in a closed space or building are generally separated into two categories including building-related illness (BRI) and sick building syndrome (SBS). Considered by Pathognomy research, that biological pollutants or bioaerosols (bacteria, fungi and viruses like coronavirus), are the significant inducement for “sick building syndrome (SBS)” associated with a group of mucosal, skin, and general symptoms, characterized by tiredness; headaches; irritation of skin, nose, eyes, throat and mucous membranes, most prevalent in buildings like residential and occupational like offices, schools, hotels and hospitals. Methods: Currently outdoor air purging, UV light activated air filters, chemical treatment like ozonation and oxidation, are used for the improvement of indoor air quality but these treatment techniques not only produce secondary biological pollutants but are also costly and not effective for a variety of microorganisms. In recent years, nanomaterials in the area of heterogeneous photocatalysis have gained much attention because of their enhanced physicochemical properties including particle size, surface area, dopant dispersion and interaction with the support (Titanium). Results: Heterogeneous photocatalysis systems have been reported to produce self-cleaning materials and to solve a range of environmental problems like air and water detoxification. Among various heterogeneous photocatalysts, TiO2 gained much attention due to its non-toxic nature, high stability, excellent photocatalytic ability, self-cleaning and antibacterial properties and most of all low cost and commercial availability. It is among the basic materials being used in various commercial products like as white pigment in paints for building coating. The antibacterial properties are associated with the generation of reactive oxygen species (ROS) in the presence of a light source. Conclusion: Some of the reported TiO2 nanomaterials-based air-filters and building coatings are reported with the major drawbacks like lower surface area, inactivation in the absence of light (dark) and activation only under UV light irradiation. Thus, the requirement for cost effective, safer and energy efficient materials is the need of the day.

Funder

Institute of Research and Consulting Studies at King Khalid University

Publisher

Bentham Science Publishers Ltd.

Subject

Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3