Affiliation:
1. School of Materials Science and Nanotechnology, Jadavpur University, Kolkata,India
2. Faculty of Engineering and Computing Sciences, Teerthanker Mahaveer University, Moradabad, UP 244001,India
Abstract
Background:
Rapid escalation in textile, paper, pesticides, pharmaceuticals and several other chemical based
manufacturing industries due to amplification in human requirements have proportionately contributed to the extreme
contamination of water ecosystem, resulted from the discharge of toxic pollutants from industries. Effluents from textile
industries are comprised of coloured dyes like Rhodamine B, Methyl Orange, Methylene Blue and phenolic compounds
which deserve special mention owing to their non-biodegradable, carcinogenic and severe detrimental nature. Urgent
needs to ameliorate this fast declining environmental situation are of immense necessity in current scenario.
Objectives:
Objectives: In this regard, graphitic carbon nitride (GCN) is a distinguished material for water purification-based
applications because of its exclusive characteristics making it highly prospective for degradation of toxic dyes from water
by catalysis and adsorption techniques. GCN has been a material of conspicuous interest in recent times owing to its two
dimensional sheets like structure with favourable surface area, and cost-effective synthesis approaches along with high
production yield. This article presents a detail study of different aspects of GCN as a material of potential for water
purification. Through extensive literature survey it has been shown that GCN is an effective material to be used in the
fields of application. Several effective procedures like catalysis or adsorption for removal of dyes from water have been
discussed with their basic science behind.
Conclusions:
This systematic effort shows that GCN can be considered to be one of the most efficient water purifier with
further advantages arising from its easy and cost effective large scale synthesis.
Publisher
Bentham Science Publishers Ltd.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献