Fabrication of Electrochemical Sensor for Epinine Determination Amplified with MgO/CNTs Nanocomposite and Ionic Liquid

Author:

Shahraki Shirin1,Masrournia Mahboubeh1ORCID,Karimi-Maleh Hassan2

Affiliation:

1. Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad,Iran

2. Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Advanced Technology, Quchan,Iran

Abstract

Background: Catecholamines are a large group of pharmacological and biological compounds that are widely used in biological systems. These compounds are prepared both naturally and synthetically with many key roles in the human body and its activities. Therefore, many researchers focused on the identification and determination of catecholamines in biological samples. Methods: MgO/SWCNTs were synthesized through the chemical precipitation method. In addition, cyclic voltammetry, differential pulse voltammetry, and chronoamperometric methods were used for the electro-oxidation reaction study of epinine at the surface of the modified electrode. Results: Carbon paste electrode (CPE) modified with MgO/SWCNTs nanocomposite and 1-butyl- 3-methylimidazolium methanesulfonate (BMMS) was used as an electrochemical sensor for the determination of epinine. The results showed a linear dynamic range of 5.0 nM-250 μM with a detection limit of 0.1 nM for epinine determination using MgO/SWCNTs/BMMS/CPE as a sensor. Conclusion: In the present study, a highly sensitive electrochemical sensor was designed and fabricated as an analytical tool for the determination of epinine. MgO/SWCNTs/BMMS/CPE was successfully used for the determination of epinine in water and dextrose saline with an acceptable recovery range of 98.7%-102.72%.

Publisher

Bentham Science Publishers Ltd.

Subject

Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3