Determination of Salicylic Acid Using a Highly Sensitive and New Electroanalytical Sensor

Author:

Montazarolmahdi Maliheh1,Masrournia Mahboubeh1,Nezhadali Azizollah2

Affiliation:

1. Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad,Iran

2. Department of Chemistry, Payame Noor University, 19395-4697, Tehran,Iran

Abstract

Background: A drug sensor (salicylic acid, in this case) was designed and made up of this research. The senor was made by modification of paste electrode (MPE) with CuO-SWCNTs and 1-hexyl-3-methylimidazolium chloride (HMICl). The MPE/CuO-SWCNTs/HMICl showed catalytic activity for the oxidation signal of salicylic acid in phosphate buffer solution. Methods: Electrochemical methods were used as a powerful strategy for the determination of salicylic acid in pharmaceutical samples. Aiming at this goal, carbon paste electrode was amplified with conductive materials and used as a working electrode. Results: The MPE/CuO-SWCNTs/HMICl was used for the determination of salicylic acid in the concentration range of 1.0 nM – 230 µM using differential pulse voltammetric (DPV) method. At pH=7.0, as optimum condition, the MPE/CuOSWCNTs/HMICl displayed a high-quality ability for the determination of salicylic acid in urine, pharmaceutical serum, and water samples. Conclusion: The MPE/CuO-SWCNTs/HMICl was successfully used as a new and high performance working electrode for the determination of salicylic acid at a nanomolar level and in real samples.

Publisher

Bentham Science Publishers Ltd.

Subject

Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3