Graphene-based Nanomaterials for Electrochemical Sensing of Hydrazine: A Short Review

Author:

Singh Manorama1ORCID,Bhardiya Smita R.1,Rai Ankita2,Rai Vijai K.1

Affiliation:

1. Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, 495009, India

2. School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India

Abstract

Background: Hydrazine is a well-known hepatotoxic, mutagen, and carcinogen. It adversely affects not only the liver, DNA, and kidney but the central nervous system also. As per the record of the Environmental Protection Agency (EPA), the United States, the optimum concentration of it has been permitted in sewage and industrial and agricultural effluents is 0.1 ppm. Therefore, monitoring hydrazine concentration is essential at the trace level. This review focuses on the preparation, characterization, and application of graphene-based nanomaterials for the development of electrochemical sensors for hydrazine sensing. Methods: Several literature reports over the last decade, i.e., 2010 to 2021, have been tried to summarize the development of different electrochemical sensors using graphene-based nanomaterials for the detection of hydrazine in water and other environmental samples. The performance of several reported modified electrodes has been reviewed in terms of limit of detection, linear range, selectivity, etc. Results: Graphene-based nanomaterials/nanocomposites offer a new path toward the development of high-performance electrochemical sensors due to their greater active surface area and good electron transference property. Furthermore, these nanostructures have defects in edges, and they can be expected to show more reactivity towards chemical species compared to pristine graphene. However, these novel graphene nanostructures have been scantily explored in the development of electrochemical sensors. Conclusion: The review presents that graphene-based nanomaterials offer excellent electrocatalytic and electrochemical behavior toward hydrazine detection. The performance of fabricated electrochemical sensors has been compared in terms of linear range, limit of detection, stability, and sensitivity. Still, no commercialized electrochemical sensor is available and there is enough scope to synthesize an efficient graphene-based nanomaterial to develop a portable and on-site electrochemical sensor for hydrazine detection.

Publisher

Bentham Science Publishers Ltd.

Subject

Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3