Glucose and Ethanol Checked by Flow Direct Catalytic Fuel Cell (DCFC) and Energetic Considerations

Author:

Tomassetti Mauro12,Castrucci Mauro2,Dell’Aglio Emanuele2,Campanella Luigi2,Pezzilli Riccardo3,Natale Corrado Di1

Affiliation:

1. Department of Electronic Engineering, Tor Vergata University, Via Politecnico 1, Rome, Italy

2. Department of Chemistry, La Sapienza University, P.le A. Moro 5, Rome, Italy

3. Department of Industrial Engineering, Tor Vergata University, Via Politecnico 1, Rome, Italy

Abstract

Aims: A new basic research was conducted concerning the possibility of using a flow DCFC (Direct Catalytic Fuel Cell) for analytical purposes, checking ethanol and glucose. Also making considerations on the energy conversion aspect of these fuels. Background: There are a large number of studies concerning catalytic or microbial fuel cells, which allow to obtain electricity, both using liquid fuels, such as ethanol and methanol, or solid fuels, such as carbohydrates, biomass and so on. These systems are frequently characterized by high conversion efficiency but also high complexity and considerable costs. Objective: In the present research we investigated the possibility of using a very simple flow system to carry out measurement of ethanol concentration, or glucose analysis, using the same flow system associated with a small reactor containing yeast (Saccharomyces cerevisiae). Methods: The main operating conditions have been optimized and the concentration range where the flow system response shows a linear correlation with the fuel concentration was also identified. Result: The current delivered by the catalytic system operating in flow was determined and the calibration sensitivity values are higher than the sensitivity found in batch mode. It has also been shown that it is possible to realize a very simple system, which can be used to study and evaluate the conversion of chemical energy into electrical energy, using ethanol or glucose as fuel and the theoretical importance and analytical advantages have been emphasized, so that the use of carbohydrates, such as solid fuels, could represent. Conclusion: Present research has shown how, by operating in flow mode, rather than in batch, it is possible to have advantages from an analytical point of view, since a considerable increase in the sensitivity of the method can be obtained, probably attributable to a reduction in the effects of poisoning. Moreover, how it is possible to study and optimize the energy conversion conditions by means of a simple and inexpensive apparatus.

Publisher

Bentham Science Publishers Ltd.

Subject

Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3