Recent Advances on Drug Analyses Using Ultra Performance Liquid Chromatographic Techniques and their Application to the Biological Samples
-
Published:2019-05-07
Issue:3
Volume:15
Page:277-293
-
ISSN:1573-4110
-
Container-title:Current Analytical Chemistry
-
language:en
-
Short-container-title:CAC
Author:
Kurbanoglu Sevinc1, Karsavurdan Ozer1, Ozkan Sibel A.1
Affiliation:
1. Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
Abstract
Introduction:
Ultra-Performance Liquid Chromatographic (UPLC) method enables analyst
to establish an analysis at higher pressure than High Performance Liquid Chromatographic (HPLC)
method towards liquid chromatographic methods. UPLC method provides the opportunity to study a
higher pressure compared to HPLC, and therefore smaller column in terms of particle size and internal
diameter are generally used in drug analysis. The UPLC method has attracted gradually due to its advantages
such as short analysis time, the small amount of waste reagents and the significant savings in
the cost of their destruction process. In this review, the recent selected studies related to the UPLC
method and its method validation are summarized. The drug analyses and the results of the studies
which were investigated by UPLC method, with certain parameters from literature are presented.
Background:
Quantitative determination of drug active substances by High-Performance Liquid
Chromatography (HPLC) from Liquid Chromatography (LC) methods has been carried out since the
1970's with the use of standard analytical LC methods. In today's conditions, rapid and very fast even
ultra-fast, flow rates are achieved compared to conventional HPLC due to shortening analysis times,
increasing method efficiency and resolution, reducing sample volume (and hence injection volume),
reducing waste mobile phase. Using smaller particles, the speed and peak capacity are expanding to
new limit and this technology is named as Ultra Performance Liquid Chromatography. In recent years,
as a general trend in liquid chromatography, ultra-performance liquid chromatography has taken the
place of HPLC methods. The time of analysis was for several minutes, now with a total analysis time
of around 1-2 minutes. The benefits of transferring HPLC to UPLC are much better understood when
considering the thousands of analyzes performed for each active substance, in order to reduce the cost
of analytical laboratories where relevant analysis of drug active substances are performed without
lowering the cost of research and development activities.
Methods:
The German Chemist Friedrich Ferdinand Runge, proposed the use of reactive impregnated
filter paper for the identification of dyestuffs in 1855 and at that time the first chromatographic method
in which a liquid mobile phase was used, was reviewed. Christian Friedrich Chönbein, who reported
that the substances were dragged at different speeds in the filter paper due to capillary effect, was
followed by the Russian botanist Mikhail S. Tswet, who planted studies on color pigment in 1906.
Tswet observes the color separations of many plant pigments, such as chlorophyll and xanthophyll
when he passes the plant pigment extract isolated from plant through the powder CaCO3 that he filled
in the glass column. This method based on color separation gives the name of "chromatographie"
chromatography by using the words "chroma" meaning "Latin" and "graphein" meaning writing.
Results and Conclusion:
Because the UPLC method can be run smoothly at higher pressures than the
HPLC method, it offers the possibility of analyzing using much smaller column sizes and column diameters.
Moreover, UPLC method has advantages, such as short analysis time, the small amount of
waste reagents and the significant savings in the cost of their destruction process. The use of the
UPLC method especially analyses in biological samples such as human plasma, brain sample, rat
plasma, etc. increasingly time-consuming due to the fact that the analysis time is very short compared
to the HPLC, because of the small amount of waste analytes and the considerable savings in their cost.
Publisher
Bentham Science Publishers Ltd.
Subject
Analytical Chemistry
Reference135 articles.
1. Colin H, Guiochon G. J Chromatogr A, Introduction to reversed-phase high-performance liquid chromatography.,, 1977, 141,, 289-312, 2. Swartz ME. J Liq Chromatogr Relat Technol, UPLC: An introduction and review.,, 2005, 28,, 1253-1263, 3. Chesnut SM, Salisbury JJ. J Sep Sci, The role of UHPLC in pharmaceutical development.,, 2007, 30,, 1183-1190, 4. Avula B, Wang YH, Rumalla CS, Ali Z, Smillie TJ, Khan IA. J Pharm Biomed Anal, Analytical methods for determination of magnoflorine and saponins from roots of caulophyllum thalictroides (L.) Michx. Using UPLC, HPLC and HPTLC.,, 2011, 56,, 895-903, 5. Wren SAC, Tchelitcheff P. J Chromatogr A, Use of ultra-performance liquid chromatography in pharmaceutical development.,, 2006, 1119,, 140-146,
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|