A Fluorescent g-C3N4 Nanosensor for Detection of Dichromate Ions

Author:

Shiravand Ghasem1,Badiei Alireza1,Goldooz Hassan1,Karimi Mehdi1,Ziarani Ghodsi M.2,Faridbod Farnoush3,Ganjali Mohammad R.3

Affiliation:

1. School of Chemistry, College of Science, University of Tehran, Tehran, Iran

2. Department of Chemistry, Faculty of Science, Alzahra University, Tehran, Iran

3. Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran

Abstract

Background: Dichromate (Cr2O7 2-) ion is one of the carcinogenic and toxic spices in environment which can easily contaminate the environment due to its high solubility in water. Therefore, a lot of attention has been focused on the detection of Cr2O7 2- with high sensitivity and selectivity. Methods: In present work, nitrogen-rich precursor was used for synthesizing graphitic carbon nitride (g-C3N4) nanostructures through hydrothermal oxidation of g-C3N4 nanosheets. The prepared nanostructures show two distinct fluorescence emissions centered at 368 and 450 nm which are highly sensitive toward Cr2O7 2- ions. Results: The as-prepared g-C3N4 was characterized by several techniques such as Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and fluorescence emission spectra. The XRD pattern of prepared nanostructures illustrated two diffraction patterns (at 13.4° and 27.6°) indicating tri-s-tri-azine-based structures. The g-C3N4 exhibited good selectivity and sensitivity toward Cr2O7 2- among other anions. According to titration test, the detection limit and stern-volmer constant (Ksv) were calculated as 40 nM and 0.13×106 M-1, respectively. The investigation of quenching mechanism shows that Cr2O7 2- may form hydrogen bonding with surface groups of g-C3N4 (such as NH2, OH and COOH) resulted in more fluorescence quenching in comparison with the pure inner filter effect. Conclusion: The g-C3N4 nanostructures were successfully synthesized through the hydrothermal oxidation. The as-prepared g-C3N4 can be used as a highly sensitive fluorescent probe for the selective determination of Cr2O7 2 ion among other anions. The quenching mechanism was experimentally studied. According to reliable responses in real sample tests, it can be proposed that g-C3N4 nanostructure is a suitable sensitive nanosensor for detection of Cr2O7 2 ions in aqueous media.

Publisher

Bentham Science Publishers Ltd.

Subject

Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3