A Friendly Environmental CE Method to Determine Doxycycline Hyclate in Suppositories and Application to Tablet Assay

Author:

Christ Ana P.1,Burin Sulen L.1,Adams Andréa I.H.2

Affiliation:

1. Programa de Pos-Graduacao em Ciencias Farmaceuticas, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil

2. Departamento de Farmacia Industrial, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil

Abstract

Background: The demand for green analytical methods is rising, mainly due its impact on the reduction of waste generation. The official method to assay Doxycycline Hiclate (DOXH) is HPLC, using an unusual column and a multi-component mobile phase. Objective: To develop a capillary electrophoresis method (CZE) to assay DOXH in suppositories and tablets. Methods: Doxycycline was analyzed in a CZE system using a fused silica capillary silica (effective length 40 cm), voltage 25kV, temperature 24°C, detection at 260 nm and hydrodynamic injection of 50mBar/5s. The electrolyte was a mixture of acetonitrile and aqueous solution composed of 25 mM sodium carbonate and 5mM EDTA, pH 10.6. Results: The method was validated according to ICH requirements and DOXH detection was achieved at around 5 min. A linear relationship was observed in the range of 20 to 160 µg.mL-1, the method was precise, showing values of relative standard deviation below 2%. Accuracy was demonstrated by DOXH recovery values ranging from 98.0 to 102.0%, for all the formulations. The specificity was studied by the peak purity evaluation and by the good resolution between peaks of DOXH, degradation products and a related substance intentionally added to the sample solution. Robustness was evaluated by 23 full factorial design, and no effect on DOXH assay was observed under simultaneous variation in significant analytical parameters. Conclusion: This simple and inexpensive method may be used to determine DOXH in suppositories as well tablets, under identical analytical conditions and can be a green alternative to the HPLC official method.

Publisher

Bentham Science Publishers Ltd.

Subject

Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3