Technologies for Treatment of Landfill Leachate: A Brief Review

Author:

Parida Barshabaisalini1,Dash Aditya K.1,Verma Akshaya K.23

Affiliation:

1. Dept. of Chemistry, ITER, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar, India

2. Dept. of Civil Engineering, ITER, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar, India

3. Zuckerberg Institute for Water Research, BIDR, Ben Gurion University of the Negev, Sede boqer Campus, Israel

Abstract

Abstract: Landfill leachate contains organic compounds like amines, ketones, carboxylic acid, alcohols, aldehydes, phenols, phosphates and inorganic pollutants such as ammonia, phosphorous, sulphate, emerging contaminants like per-and polyfluoroalkyl substances (PFAS) and also the toxic heavy metals like Mn, Cd, Pb, Fe, Ni, Zn and As. In young landfill leachate, the concentration of volatile acid and simply degraded organic matter is high while pH is low. However, in mature landfills, there is more leachate production with high pH. The age of landfill and determination of parameters like BOD, COD, COD/BOD ratio are important to know the appropriate treatment methods. Physicochemical, biological and combined methods are the most reported landfill leachate treatment methods. Advanced oxidation process, adsorption, coagulation-flocculation, bioremediation, phytoremediation, bioreactor, membrane process and air striping are some of the common categories of effective treatment of landfill leachate. For better apprehension, it has been reviewed that treatment efficiencies of different kinds of leachate depend on their composition and method adopted. Studies related to the removal of organic matter and heavy metals are predominant which reported excellent removal efficiency ranging from 80-100%. In addition, physical parameters like color and turbidity can also be removed effectively using appropriate treatment methods. The present article deals with a concise review of existing literature on sustainable landfill leachate treatment technologies which include physical, chemical, biological and combined techniques.

Publisher

Bentham Science Publishers Ltd.

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3