Polymethylhydrosiloxane Coating Enhanced Corrosion Resistance of Hydrofluoric Acid Treated Mg Bio-implant Material in Simulated Body Fluid Solution

Author:

Bharti Manjubala1,Sahu Ranjan K1

Affiliation:

1. CSIR-National Metallurgical Laboratory, Jamshedpur, 831007, India

Abstract

Background: Deceleration of the corrosion rate of Mg by surface chemical method via hydrofluoric acid treatment has a special interest because it is a simple, cost-effective, and efficient method for the coating of interior as well as the exterior part of any size and shape of implant material. However, conversion coating by hydrofluoric acid treatment fails to produce a long-term stable coating of Mg in ionic solutions caused by the formation of cracks on the surface during the process. Consequently, the corrosive ions of the SBF solution enter through the cracks that accelerate the dissolution by local galvanic corrosion. On the above view, we aim to develop a simple strategy for enhancement of corrosion resistance of the hydrofluoric acid treated Mg bioimplant material. Methods: This method is comprised of dip coating of hydrofluoric acid treated Mg sample in the polymethylhydrosiloxane followed by curing at 170°C for 30 min. The samples were characterized by electron probe microanalysis, X-ray photoelectron spectroscopy and electrochemical test. Results: The electrochemical test results reveal that the corrosion rate of the coated Mg sample in the simulated body fluid solution is decreased by more than 8500 times than the bare sample. The long term immersion data indicate that the chemical resistance of the coated Mg sample in the SBF solution even after 25 days is better than the bare Mg metal. Conclusion: Polymethylhydrosiloxane coating is efficient to enhance the corrosion resistance of hydrofluoric acid treated Mg metal in simulated body fluid solution.

Publisher

Bentham Science Publishers Ltd.

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3