Continuous and Short Fiber Reinforced Composite in Root Post-Core System of Severely Damaged Incisors

Author:

Garoushi Sufyan,Vallittu Pekka K,Lassila Lippo V.J

Abstract

Purpose: The aim of this study was to determine the static load-bearing capacity of endodontically treated maxillary incisors restored with post-core complex made of experimental fiber composite resin (FC) and complete crown made of particulate filler composite (PFC). Further aim was to evaluate the effect of FC resin on the failure mode of the restoration. Material and Methods: The experimental composite resin (FC) was prepared by mixing 22.5 wt% of short E-glass fibers (3 mm in length) and 22.5 wt% of semi-interpenetrating polymer network (IPN) resin with 55 wt% of silane treated silica fillers. Thirty extracted sound upper central incisors were used. Twenty teeth were prepared by cutting the clinical crown 2 mm above the cemento-enamel junction horizontally. Restorations were made by two techniques (n=10). Group A (control group) contained samples of sound incisor teeth. Group B had teeth restored using glass fiber post (everStick, Stick- Teck) and PFC (Filtek Z250, 3M-ESPE) to build up core and complete crown. In Group C, the teeth were restored with FC as post-core and complete crown of PFC. The root canals were prepared and posts were cemented with a dual cure resin cement. The restorations were polymerized with a hand-light curing unit. All restored teeth were stored in water at room temperature for 24 h before they were statically loaded with speed of 1.0 mm/min until fracture. Data were analyzed using ANOVA (p=0.05). Failure modes were visually examined. Results: ANOVA revealed that restored incisors (Group B and C) had a statistically significantly lower load-bearing capacity (p<0.05) than the control group. Restorations made from FC post-core and PFC coverage (Group C) gave force value of 363 N (112 SD), which was higher than the value of Group B (211 N, 50 SD). Conclusions: Within the limitations of this study, the teeth restored with experimental fiber composite post-core demonstrated higher load bearing capacity than those with fiber post and PFC core.

Publisher

Bentham Science Publishers Ltd.

Subject

General Dentistry

Reference37 articles.

1. Qualtrough AJ, Mannocci F. Tooth-colored post system: a review Oper Dent 2003; 28 : 86-91.

2. Grandini S, Goracci C, Tay FR, Grandini R, Ferrari M. Clinical evaluation of the use of fiber posts and direct resin restorations for endodontically treated teeth Int J Prosthodont 2005; 18 : 399-404.

3. Saupe WA, Gluskin AH, Radke RA. A comparative study of fracture resistance between morophological dowel and cores and a resin-reinforced dowel system in the intraradicular restoration of structurally compromised roots Quintessence Int 1996; 27 : 483-91.

4. Sirimai S, Riis DN, Morgano SM. An in vitro study of the fracture resistance and the incidence of vertical root fracture of pulpless teeth restored with post-and-core systems J Prosthet Dent 1999; 81 : 262-69.

5. Fokkinga WA, Kreulen CM, LeBell- Rönnlöf AM, Lassila LV, Vallittu PK, Creugers NH. Fracture behavior of structurally compromised non-vital maxillary premolars restored using experimental fiber-reinforced composite crowns Am J Dent 2006; 19 : 326-.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3