Abstract
Background:
Numerous materials have been introduced as coronal barriers, however, they have shown various degrees of microleakage. Therefore, attempts are undertaken to introduce more reliable materials with the potential to provide a long-term coronal seal.
Introduction:
This in vitro study aimed to assess the efficacy of gray ProRoot Mineral Trioxide Aggregate (MTA) modified by a suspension of silver nanoparticles (AgNPs) as an orifice plug using a bacterial leakage method.
Methods:
40 extracted human teeth were prepared and filled (except for the negative control group) using the lateral compaction technique. The coronal 2 mm of the root filling was removed in the experimental groups. The teeth were randomly divided into two experimental (n = 15) and two control (n = 5) groups. In the experimental group 1 (MTA group) and the experimental group 2 (Ag-MTA group), MTA modified by a suspension of AgNPs was used as an orifice plug. In the negative control group, the entire root surfaces were covered with two layers of nail varnish. In the positive control group, the root canals were filled with a single gutta-percha cone without a sealer and no orifice plug. Bacterial leakage was assessed using a two-chamber system. The teeth were incubated at 37°C and 100% humidity for 120 days, and human saliva was added to the samples every 3 days. Bacterial microleakage was assessed by daily monitoring and observating the turbidity of the Brain Heart Infusion (BHI) broth. The data were analyzed using the log-rank test.
Results:
All positive controls showed contamination after 5 days. None of the negative controls were contaminated during the experiment. The Ag-MTA group demonstrated a significantly better coronal seal than the MTA group (p = 0.031).
Conclusion:
Gray ProRoot MTA modified by AgNPs has the potential for being used as an orifice plug in endodontically treated teeth.
Publisher
Bentham Science Publishers Ltd.
Reference33 articles.
1. Ghulman MA, Gomaa M.
Effect of intra-orifice depth on sealing ability of four materials in the orifices of root-filled teeth: An ex-vivo study.
Int J Dent
2012;
2012
2. Deepali S, Hedge M.
Coronal microleakage of four restorative materials used in endodontically treated teeth as a coronal barrier-an in vitro study.
Endodontol
2008;
20
: 27-35.
3. Timpawat S, Amornchat C, Trisuwan WR.
Bacterial coronal leakage after obturation with three root canal sealers.
J Endod
2001;
27
(1)
: 36-9.
4. Tselnik M, Baumgartner JC, Marshall JG.
Bacterial leakage with mineral trioxide aggregate or a resin-modified glass ionomer used as a coronal barrier.
J Endod
2004;
30
(11)
: 782-4.
5. Jenkins S, Kulild J, Williams K, Lyons W, Lee C.
Sealing ability of three materials in the orifice of root canal systems obturated with gutta-percha.
J Endod
2006;
32
(3)
: 225-7.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献