Wind Instrumentalist Embouchure and the Applied Forces on the Perioral Structures

Author:

Clemente Miguel P.,Moreira André,Mendes Joaquim,Ferreira Afonso P.,Amarante José M.

Abstract

Introduction:The wind instrumentalist embouchure is probably one of the most demanding tasks that occurs during their musical performance. It is important to quantify the forces that are applied during the wind instrumentalist embouchure on the perioral structures.Objective:Quantify the force on the perioral structures involved during the embouchure mechanism of wind instrumentalists.Methods:Piezoresistive sensors of FlexiForceTMwere placed on the mouthpiece of 28 different wind instrumentalists, in order to obtain the applied forces transmitted to the upper lip or the lower lip. The application of the sensors were done according to the particular characteristics of the different types of wind instruments, single reed, double reed or metal. Each participant performed three times three different notes at different pitches: high, medium and low. The average medium and maximum pressure was obtained from the nine essays. The sensors were connected to a data acquisition board from National Instruments and the results displayed in LabVIEW 2011.Results:Measurement values were obtained for the different groups of wind instruments. In an ascending order, the pressures registered where for the bassoon (6g-31g), the oboe (17g-125g), the saxophone (39g-120g), the clarinet (54g-106g), the trumpet, (63g-172g), the bisel flute (73g-245g), the French horn (56g-305g), the transversal flute (220g-305g) and the trombone (201g-325g).Conclusion:Metal instrumentalists seem to apply greater forces than woodwind musicians when performing the embouchure mechanism, being in this specific case the trombone the instrument from the metal group to exert more force, while on the contrary, the bassoon registered the lower values.

Publisher

Bentham Science Publishers Ltd.

Subject

General Dentistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3