Deciphering Immune-related Gene Signatures in Diabetic Retinopathy: Insights from In silico Analysis and In vitro Experiment

Author:

Xia Nan1,Zhao Qingsong1,Xu Jinmei1,Cheng Zhifeng1

Affiliation:

1. Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China

Abstract

Background: Diabetes retinopathy (DR) is one of the most common microvascular consequences of diabetes, and the economic burden is increasing. Our aim is to decipher the relevant mechanisms of immune-related gene features in DR and explore biomarkers targeting DR. Provide a basis for the treatment and prevention of DR. Methods: The immune infiltration enrichment score of DR patients was evaluated from the single- cell RNA sequencing dataset, and the samples were divided into low immune subgroups and high immune subgroups based on this result. Through weighted gene correlation network analysis, differentially expressed genes (DEGs) between two subgroups were identified and crossed with genes with the strongest immune association, resulting in significant key genes. Then divide the DR individuals into two immune related differentially expressed gene (IDEG) clusters, A and B. Submit cross DEGs between two clusters through Gene Set Enrichment Analysis (GSEA) to further explore their functions. A protein-protein interaction (PPI) network of IDEG was established to further identify central genes associated with DR. Use the discovered central genes to predict the regulatory network involved in the pathogenesis of DR. Then, the role of the identified hub gene in the pathogenesis of DR was further studied through in vitro experiments. Results: We found that the immune scores of DR and control groups were different, and 27 IDEGs were found in the DR subgroup. Compared with cluster A, the proportion of cytotoxic lymphocytes, B lineage, monocyte lineage, and fibroblasts in DR patients in cluster B is significantly enriched. GSEA indicates that these genes are associated with T cell activation, regulation of immune response processes, lymphocyte-mediated immunity, TNF signaling pathway, and other signaling pathways. The PPI network subsequently identified 10 hub genes in DR, including SIGLEC10, RGS10, PENK, FGD2, LILRA6, CIITA, EGR2, SIGLEC7, LILRB1, and CD300LB. The upstream regulatory network and lncRNA miRNA mRNA ceRNA network of these hub genes were ultimately constructed. The discovery and identification of these genes will provide biomarkers for targeted prediction and treatment of DR. Conclusion: By integrating bioinformatics analysis and in vitro experiments, we have identified a set of central genes, indicating that these genes can serve as potential biomarkers for DR, which may be promising targets for future DR immunotherapy interventions.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3