Implementation of Silver Nanoparticles Green Synthesized with Leaf Extract of Coccinia grandis as Antimicrobial Agents Against Head and Neck Infection MDR Pathogens

Author:

Lenka Smarita1ORCID,Dubey Debasmita1ORCID,Swain Santosh Kumar2ORCID,Rath Goutam3,Mishra Ajit3,Bishoyi Ajit Kumar4,Purohit Gopal Krishna5

Affiliation:

1. Department of Medical Research, IMS and SUM Hospital, Siksha ‘O’ Anusandhan Deemed to be University, K8, Kalinga Nagar, Bhubaneswar, 751003, Odisha, India

2. Department of Otorhinolaryngology and Head and Neck Surgery, All India Institute of Medical Sciences, Sijua, Patrapada, Bhubaneswar, 751019, Odisha, India

3. School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India

4. Clinical Hematology, IMS and SUM Hospital, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India

5. Heredity Biosciences LLP. Bhubaneswar, 751015, Odisha, India

Abstract

Background: Head and neck infections (HNI) associated with multidrug resistance (MDR) offer several health issues on a global scale due to inaccurate diagnosis. Objectives: This study aimed to identify the bacteria and Candidal isolates and implement the silver nanoparticles green synthesized with leaf extract of Coccinia grandis (Cg-AgNPs) as a therapeutic approach against HNI pathogens. Methods: The Cg-AgNPs were characterized by the UV-visible spectrophotometer, FT-IR analysis, Zeta particle size, Zeta potential, and field emission scanning electron microscope (FESEM) analysis to validate the synthesis of nanoparticles. Additionally, the antimicrobial activity of Cg-AgNPs was presented by the zone of inhibition (ZOI), minimum inhibitory concentration (MIC), minimum bactericidal/fungicidal concentration (MBC/MFC), and antibiofilm assay. Moreover, the cell wall rupture assay was visualized on SEM for the morphological study of antimicrobial activities, and the in-vivo toxicity was performed in a swiss mice model to evaluate the impact of Cg-AgNPs on various biological parameters. Results: Different bacterial strains (Staphylococcus aureus, Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa) and Candida sp. (Candida albicans, Candida tropicalis, Candida orthopsilosis, and Candida glabrata) were identified. The MIC, MBC, and antibiofilm potential of Cg-AgNPs were found to be highest against A. baumannii: 1.25 μg/ml, 5 μg/ml, and 85.01±5.19% respectively. However, C. albicans and C. orthopsilosis revealed 23mm and 21mm of ZOI. Subsequently, the micromorphology of the cell wall rupture assay confirmed the efficacy of Cg-AgNPs, and no significant alterations were seen in biochemical and hematological parameters on the swiss mice model in both acute and subacute toxicity studies. Conclusion: The green synthesized Cg-AgNPs have multifunctional activities like antibacterial, anticandidal, and antibiofilm activity with no toxicity and can be introduced against the HNI pathogens.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3