Formulation, Characterization, and Potential Therapeutic Implications of Encapsulated Recombinant Alpha-Luffin in Niosomes

Author:

Joni Hajar Abedi1,Esmaeili Fariba2,Landi Behnaz3,Bayat Elham3,Bakhshandeh Haleh4,Talebkhan Yeganeh3,Barkhordari Farzaneh3,Sadeghi Somayeh4,Nematollahi Leila3,Negahdari Babak1ORCID

Affiliation:

1. Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran

2. Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran

3. Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran

4. Department of Nano Biotechnology, New Technology Research Group, Pasteur Institute of Iran, Tehran, Iran

Abstract

Objective: The anticancer properties of recombinant α-luffin (LUF) are wellestablished. However, the cytotoxic effects of encapsulating LUF within niosomes on the SKBR3 breast cancer cell line have yet to be explored. Our study aimed to investigate whether this encapsulation strategy could improve cytotoxic effects. Methods: Alpha-luffin was expressed, purified, and refolded. Then, this protein was utilized to craft an optimal formulation, guided by experimental design. In this work, we have explored various physicochemical properties, including particle size, polydispersity index, zeta potential, morphology, entrapment efficiency, drug release and kinetics, storage stability, and FTIR spectroscopy. Additionally, we have assessed the cellular uptake and cytotoxic effect of the optimized niosome formulation on the SKBR3 breast cancer cell line. Results: The optimized niosome exhibited a mean diameter of 315±6.4 nm (DLS). Successful encapsulation of LUF into regularly shaped, spherical niosomes was achieved, with an encapsulation efficiency of 73.45±2.4%. Notably, Niosomal LUF (NLUF) exhibited significantly increased cytotoxicity against SKBR3 cells. Conclusion: These findings suggest that niosomes loaded with LUF hold promise as a potential treatment strategy for breast cancer.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3