Quantitative Comparisons of Deep-learning-based and Atlas-based Auto-segmentation of the Intermediate Risk Clinical Target Volume for Nasopharyngeal Carcinoma

Author:

He Yisong1,Zhang Shengyuan2,Luo Yong1,Yu Hang1,Fu Yuchuan1ORCID,Wu Zhangwen2,Jiang Xiaoxuan1,Li Ping1

Affiliation:

1. Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China

2. Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, Sichuan Province, China

Abstract

Background: Manual segment target volumes were time-consuming and inter-observer variability couldn’t be avoided. With the development of computer science, auto-segmentation had the potential to solve this problem. Objective: To evaluate the accuracy and stability of Atlas-based and deep-learning-based auto-segmentation of the intermediate risk clinical target volume, composed of CTV2 and CTVnd, for nasopharyngeal carcinoma quantitatively. Methods and Materials: A cascade-deep-residual neural network was constructed to automatically segment CTV2 and CTVnd by deep learning method. Meanwhile, a commercially available software was used to automatically segment the same regions by Atlas-based method. The datasets included contrast computed tomography scans from 102 patients. For each patient, the two regions were manually delineated by one experienced physician. The similarity between the two auto-segmentation methods was quantitatively evaluated by Dice similarity coefficient, the 95th Hausdorff distance, volume overlap error and relative volume difference, respectively. Statistical analyses were performed using the ranked Wilcoxon test. Results: The average Dice similarity coefficient (±standard deviation) given by the deep-learning-based and Atlas-based auto-segmentation were 0.84(±0.03) and 0.74(±0.04) for CTV2, 0.79(±0.02) and 0.68(±0.03) for CTVnd, respectively. For the 95th Hausdorff distance, the corresponding values were 6.30±3.55mm and 9.34±3.39mm for CTV2, 7.09±2.27mm and 14.33±3.98mm for CTVnd. Besides, volume overlap error and relative volume difference could also predict the same situations. Statistical analyses showed significant difference between the two auto-segmentation methods (p<0.01). Conclusions: Compared with the Atlas-based segmentation approach, the deep-learning-based segmentation method performed better both in accuracy and stability for meaningful anatomical areas other than organs at risk.

Publisher

Bentham Science Publishers Ltd.

Subject

Radiology, Nuclear Medicine and imaging

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3