Coronavirus-related Disease Pandemic: A Review on Machine Learning Approaches and Treatment Trials on Diagnosed Population for Future Clinical Decision Support

Author:

A. Reyana1ORCID,Kautish Sandeep2ORCID

Affiliation:

1. Department of Computer Science and Engineering, Assistant Professor, Hindusthan College of Engineering and Technology, Coimbatore, Tamilnadu, India

2. Department of Computer Science and Engineering, Professor, LBEF Campus, Kathmandu, Nepal

Abstract

Objective: Coronavirus-related disease, a deadly illness, has raised public health issues worldwide. The majority of individuals infected are multiplying. The government is taking aggressive steps to quarantine people, people exposed to infection, and clinical trials for treatment. Subsequently recommends critical care for the aged, children, and health-care personnel. While machine learning methods have been previously used to augment clinical decisions, there is now a demand for “Emergency ML.” With rapidly growing datasets, there also remain important considerations when developing and validating ML models. Methods: This paper reviews the recent study that applies machine-learning technology addressing Corona virus-related disease issues' challenges in different perspectives. The report also discusses various treatment trials and procedures on Corona virus-related disease infected patients providing insights to physicians and the public on the current treatment challenges. Results: The paper provides the individual with insights into certain precautions to prevent and control the spread of this deadly disease. Conclusion: This review highlights the utility of evidence-based machine learning prediction tools in several clinical settings, and how similar models can be deployed during the Corona virus-related disease pandemic to guide hospital frontlines and health-care administrators to make informed decisions about patient care and managing hospital volume. Further, the clinical trials conducted so far for infected patients with Corona virus-related disease addresses their results to improve community alertness from the viewpoint of a well-known saying, “prevention is always better.”

Publisher

Bentham Science Publishers Ltd.

Subject

Radiology, Nuclear Medicine and imaging

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3