How to Collect and Interpret Medical Pictures Captured in Highly Challenging Environments that Range from Nanoscale to Hyperspectral Imaging

Author:

Laghari Asif Ali1,V. Estrela Vania2,Yin shoulin3

Affiliation:

1. Department of Computer Science, Sindh Madressatul Islam University, Pakistan

2. Departamento de Engenharia de Telecomunica, Federal University of Rio de Janeiro, Brazil

3. Information and Communication Engineering, Harbin Institute of Technology, China

Abstract

Abstract: Digital well-being records are multimodal and high-dimensional (HD). Better theradiagnostics stem from new computationally thorough and edgy technologies, i.e., hyperspectral (HSI) imaging, super-resolution, and nanoimaging, but advance mess data portrayal and retrieval. A patient's state involves multiple signals, medical imaging (MI) modalities, clinical variables, dialogs between clinicians and patients, metadata, genome sequencing, and signals from wearables. Patients' high volume, personalized data amassed over time have advanced artificial intelligence (AI) models for higherprecision inferences, prognosis, and tracking. AI promises are undeniable, but with slow spreading and adoption, given partly unstable AI model performance after real-world use. The HD data is a ratelimiting factor for AI algorithms generalizing real-world scenarios. This paper studies many health data challenges to robust AI models' growth, aka the dimensionality curse (DC). This paper overviews DC in the MIs' context, tackles the negative out-of-sample influence and stresses important worries for algorithm designers. It is tricky to choose an AI platform and analyze hardships. Automating complex tasks requires more examination. Not all MI problems need automation via DL. AI developers spend most time refining algorithms, and quality data are crucial. Noisy and incomplete data limits AI, requiring time to handle control, integration, and analyses. AI demands data mixing skills absent in regular systems, requiring hardware/software speed and flexible storage. A partner or service can fulfill anomaly detection, predictive analysis, and ensemble modeling.

Publisher

Bentham Science Publishers Ltd.

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3