A Comprehensive Review on Nature Inspired Neural Network based Adaptive Filter for Eliminating Noise in Medical Images

Author:

Kumar Manish1,Mishra Sudhansu Kumar1

Affiliation:

1. Department of Electrical and Electronics Engineering, Birla Institute of Technology, Ranchi, India

Abstract

Background: Various kind of medical imaging modalities are available for providing noninvasive view and for analyzing any pathological symptoms of human beings. Different noise may appear in those modalities at the time of acquisition, transmission, scanning, or at the time of storing. The removal of noises from the digital medical images without losing any inherent features is always considered a challenging task because a successful diagnosis relies on them. Numerous techniques have been proposed to fulfill this objective, and each having their own benefits and limitations. Discussion: In this comprehensive review article, more than 65 research articles are investigated to illustrate the applications of Artificial Neural Networks (ANN) in the field of biomedical image denoising. In particular, the zest of this article is to highlight the hybridized filtering model using nature-inspired algorithms and artificial neural networks for suppression of noise. Various other techniques, such as fixed filter, linear adaptive filters and gradient descent learning based neural network filter are also included. Conclusion: This article envisages how to train ANN using derivative free nature-inspired algorithms, and its performance in various medical images modalities and noise conditions.

Publisher

Bentham Science Publishers Ltd.

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3