Optimal Model-Free Approach Based on MDL and CHL for Active Brain Identification in fMRI Data Analysis

Author:

Jaber Hussain A.1ORCID,Çankaya Ilyas1,Aljobouri Hadeel K.2ORCID,Koçak Orhan M.3,Algin Oktay4

Affiliation:

1. Electrical and Electronics Engineering Department, Graduate School of Natural Science, Ankara Yıldırım Beyazıt University, 06010 Ankara, Turkey

2. Biomedical Engineering Department, College of Engineering, Al-Nahrain University, Baghdad 10072, Iraq

3. Psychiatry Department, School of Medicine, Kırıkkale University, 71450 Kırıkkale, Turkey

4. Department of Radiology, City Hospital, 06800 Ankara, Turkey

Abstract

Background: Cluster analysis is a robust tool for exploring the underlining structures in data and grouping them with similar objects. In the researches of Functional Magnetic Resonance Imaging (fMRI), clustering approaches attempt to classify voxels depending on their time-course signals into a similar hemodynamic response over time. Objective: In this work, a novel unsupervised learning approach is proposed that relies on using Enhanced Neural Gas (ENG) algorithm in fMRI data for comparison with Neural Gas (NG) method, which has yet to be utilized for that aim. The ENG algorithm depends on the network structure of the NG and concentrates on an efficacious prototype-based clustering approach. Methods: The comparison outcomes on real auditory fMRI data show that ENG outperforms the NG and statistical parametric mapping (SPM) methods due to its insensitivity to the ordering of input data sequence, various initializations for selecting a set of neurons, and the existence of extreme values (outliers). The findings also prove its capability to discover the exact and real values of a cluster number effectively. Results: Four validation indices are applied to evaluate the performance of the proposed ENG method with fMRI and compare it with a clustering approach (NG algorithm) and model-based data analysis (SPM). These validation indices include the Jaccard Coefficient (JC), Receiver Operating Characteristic (ROC), Minimum Description Length (MDL) value, and Minimum Square Error (MSE). Conclusion: The ENG technique can tackle all shortcomings of NG application with fMRI data, identify the active area of the human brain effectively, and determine the locations of the cluster center based on the MDL value during the process of network learning.

Publisher

Bentham Science Publishers Ltd.

Subject

Radiology Nuclear Medicine and imaging

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Facial functional networks during resting state revealed by thermal infrared imaging;Physical and Engineering Sciences in Medicine;2023-08-29

2. Classification of Cognitive States using Task-Specific Connectivity Features;Engineering, Technology & Applied Science Research;2023-06-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3