Artificial Intelligence in Breast Cancer: A Systematic Review on PET Imaging Clinical Applications

Author:

Alongi Pierpaolo1,Rovera Guido2,Stracuzzi Federica3,Popescu Cristina Elena4,Minutoli Fabio3,Arnone Gaspare1,Baldari Sergio3,Deandreis Désirée2,Caobelli Federico5

Affiliation:

1. Nuclear Medicine Unit, A.R.N.A.S Ospedale Civico Di Cristina e Benfratelli, Palermo 90127, Italy

2. Division of Nuclear Medicine, Department of Medical Sciences, AOU Città della Salute e della Scienza, University of Turin, Turin 10126, Italy

3. Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy

4. Department of Nuclear Medicine, Kantonsspital Baden, Switzerland

5. University Clinic of Nuclear Medicine, Inselspital Bern and University of Bern, Bern, Switzerland

Abstract

Background: 18F-FDG PET/CT imaging represents the most important functional imaging method in oncology. European Society of Medical Oncology and the National Comprehensive Cancer Network guidelines defined a crucial role of 18F-FDG PET/CT imaging for local/locally advanced breast cancer. The application of artificial intelligence on PET images might potentially contributes in the field of precision medicine. Objective: This review aims to summarize the clinical indications and limitations of PET imaging for comprehensive artificial intelligence in relation to breast cancer subtype, hormone receptor status, proliferation rate, and lymphonodal (LN)/distant metastatic spread, based on recent literature. Methods: A literature search of the Pubmed/Scopus/Google Scholar/Cochrane/EMBASE databases was carried out, searching for articles on the use of artificial intelligence and PET in breast tumors. The search was updated from January 2010 to October 2021 and was limited to original articles published in English and about humans. A combination of the search terms "artificial intelligence", “breast cancer”, “breast tumor”, “PET”, “Positron emission tomography”, “PET/CT”, “PET/MRI”, “radiomic”," texture analysis", “machine learning”, “deep learning” was used. Results: Twenty-three articles were selected following the PRISMA criteria from 139 records obtained from the Pubmed/Scopus/Google Scholar/Cochrane/EMBASE databases according to our research strategy. The QUADAS of 30 full-text articles assessed reported seven articles that were excluded for not being relevant to population and outcomes and/or for lower level of evidence. The majority of papers were at low risk of bias and applicability. The articles were divided per topic, such as the value of PET in the staging and re-staging of breast cancer patients, including new radiopharmaceuticals and simultaneous PET/MRI. Conclusion: Despite the current role of AI in this field remains still undefined, several applications for PET/CT imaging are under development, with some preliminary interesting results particularly focused on the staging phase that might be clinically translated after further validation studies.

Publisher

Bentham Science Publishers Ltd.

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3