Identification of Attention-Deficit-Hyperactivity Disorder Subtypes Based on Structural MRI Grey Matter Volume and Phenotypic Information

Author:

K. Usha Rupni1,P. Aruna Priya1

Affiliation:

1. Department of Electronics and Communication Engineering, SRM Institute of Science and Technology College of Engineering, Kattankulathur-603203, Tamil Nadu, India

Abstract

Background: One of the neurodevelopmental disorders widely affecting school-aged children in recent years is attention deficit hyperactivity disorder (ADHD). In many neurodevelopmental disorders, grey matter may be used as a clinical indicator by looking at MRIs. Objective: The study aimed to segment grey matter from brain MRI using a proposed fuzzy c-means clustering-based technique for the detection of ADHD and its subtypes (ADHD-Inattentive, ADHDHyperactive, and ADHD-Combined). The grey matter volume, age, gender, and medication status of the subjects were investigated to identify ADHD subtypes. Methods: A modified fuzzy c-means with an elbow approach has been proposed to overcome the drawbacks of previous fuzzy c-means methods and improve segmentation performance. The volume of segmented grey matter was included with the phenotypic information of the ADHD-200 dataset for data analysis of typically developing (TD) and ADHD subtypes. Results: The proposed segmentation exhibited a dice similarity index of 95%. ADHD-Inattentive exhibited a loss of grey matter in the prefrontal cortex, while ADHD-hyperactive exhibited a loss of grey matter in the cerebellum when compared to TD. The analysis of ADHD subtypes based on age and gender showed that children transitioning to adolescence are mostly affected by ADHD-inattentive and female kids are less prone to ADHD-hyperactive. The whole grey matter volume of ADHD-inattentive children, on average, was found to be approximately 4% less than ADHD-combined. Furthermore, the whole grey matter volume was less in non-medication naive children. Conclusion: This study may support healthcare providers in giving appropriate occupational therapy based on the identification of different ADHD subtypes.

Publisher

Bentham Science Publishers Ltd.

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3