Investigating Optimal Echo Times for Quantitative Susceptibility Mapping of Basal Ganglia Nuclei in the Healthy Brain

Author:

Fan Wenping1ORCID,Wang Xue1ORCID,Zhang Xingwen2ORCID,Liu Mengqi1ORCID,Meng Qinglin1ORCID,Chen Zhiye1ORCID

Affiliation:

1. Department of Radiology, Hainan Hospital of Chinese PLA General Hospital, Sanya 572013, China

2. Department of Neurology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China

Abstract

Background: Quantitative susceptibility mapping (QSM) technique had been used to measure the magnetic susceptibility of brain tissue in clinical practice. However, QSM presented echo-time (TE) dependence, and an appropriate number of echo-times (nTEs) for QSM became more important to obtain the reliable susceptibility value. Objective: The aim of the study was to explore the optimal nTEs for quantitative susceptibility mapping (QSM) measurements of basal ganglia nuclei in the healthy brain. Methods: 3D multi-echo enhanced gradient recalled echo T2 star weighted angiography (ESWAN) sequence was acquired on a 3.0T MR scanner for QSM analysis. Regions of interests (ROIs) were drawn along the margin of the head of the caudate nucleus (HCN), putamen (Pu) and globus pallidus (GP). The mean susceptibility value and standard deviation of the ROIs were derived from the pixels within each region. Results: CV analysis demonstrated that TE6, TE8 and TE14 ESWAN sequences presented consistent lower CV value (< 1) for QSM measure of HCN, Pu and GP. ANOVA identified that susceptibility value showed no significant difference between TE6 and TE8 in HCN, Pu and GP (P < 0.05). ICC analysis demonstrated that the susceptibility value of TE6-TE8 had the highest ICC value as compared with TE6-TE14 and TE8-TE14 in HCN, Pu and GP. Combined with the timeefficiency of MRI scanning, TE6 sequence could not only provide the reliable QSM measurement but also short imaging time. Conclusions: The current study identified that the optimal nTEs of ESWAN were 6 TEs (2.9ms ~ 80.9ms) for QSM measurement of basal ganglia nuclei in the healthy brain.

Publisher

Bentham Science Publishers Ltd.

Subject

Radiology, Nuclear Medicine and imaging

Reference26 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3