Melanoma Detection and Classification using Computerized Analysis of Dermoscopic Systems: A Review

Author:

Nasir Muhammad1,Khan Muhammad Attique2,Sharif Muhammad1,Javed Muhammad Younus2,Saba Tanzila3,Ali Hashim2,Tariq Junaid2

Affiliation:

1. Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt, Pakistan

2. Department of Computer Science and Engineering, HITEC University, Museum Road, Taxila, Pakistan

3. Department of Computer and Information Sciences, Prince Sultan University, Riyadh, Saudi Arabia

Abstract

Malignant melanoma is considered as one of the most deadly cancers, which has broadly increased worldwide since the last decade. In 2018, around 91,270 cases of melanoma were reported and 9,320 people died in the US. However, diagnosis at the initial stage indicates a high survival rate. The conventional diagnostic methods are expensive, inconvenient and subject to the dermatologist’s expertise as well as a highly equipped environment. Recent achievements in computerized based systems are highly promising with improved accuracy and efficiency. Several measures such as irregularity, contrast stretching, change in origin, feature extraction and feature selection are considered for accurate melanoma detection and classification. Typically, digital dermoscopy comprises four fundamental image processing steps including preprocessing, segmentation, feature extraction and reduction, and lesion classification. Our survey is compared with the existing surveys in terms of preprocessing techniques (hair removal, contrast stretching) and their challenges, lesion segmentation methods, feature extraction methods with their challenges, features selection techniques, datasets for the validation of the digital system, classification methods and performance measure. Also, a brief summary of each step is presented in the tables. The challenges for each step are also described in detail, which clearly indicate why the digital systems are not performing well. Future directions are also given in this survey.

Publisher

Bentham Science Publishers Ltd.

Subject

Radiology Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3