Synthesis and Evaluation of 18F-INER-1577-3 as a Central Nervous System (CNS) Histone Deacetylase Imaging Agent

Author:

Li Ming-Hsin1ORCID,Chang Han-Chih1ORCID,Feng Chun-Fang1ORCID,Yu Hung-Wen1ORCID,Shiue Chyng-Yann2ORCID

Affiliation:

1. Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan

2. Department of Nuclear Medicine, National Taiwan University Hospital Taipei, Taiwan

Abstract

Background:: Epigenetic dysfunction is implicated in many neurologic, psychiatric and oncologic diseases. Consequently, histone deacetylases (HDACs) inhibitors have been developed as therapeutic and imaging agents for these diseases. However, only a few radiotracers have been developed as HDACs imaging agents for the central nervous system (CNS). We report herein the synthesis and evaluation of [18F]INER-1577-3 ([18F]5) as an HDACs imaging agent for CNS. Methods:: [18F]INER-1577-3 ([18F]5) was synthesized by two methods: one-step (A) and two-step (B) methods. Briefly, radiofluorination of the corresponding precursors (11, 12) with K[18F]/K2.2.2 followed by purifications with HPLC gave ([18F]5). The quality of [18F]INER- 1577-3 synthesized by these methods was verified by HPLC and TLC as compared to an authentic sample. The inhibitions of [18F]INER-1577-3 and related HDACs inhibitors on tumor cells growth were carried out with breast cancer cell line 4T1 and MCF-7. The whole-body and brain uptake of [18F]INER-1577-3 in rats and AD mice were determined using a micro-PET scanner and the data was analyzed using PMOD. Results: : The radiochemical yield of [18F]INER-1577-3 synthesized by these two methods was 1.4 % (Method A) and 8.8% (Method B) (EOB), respectively. The synthesis time was 115 min and 100 min, respectively, from EOB. The inhibition studies showed that INER-1577-3 has a significant inhibitory effect in HDAC6 and HDAC8 but not HDAC2. PET studies in rats and AD mice showed a maximum at about 15 min postinjection for the whole brain of a rat (0.47 ± 0.03 %ID/g), SAMP8 mice (5.63 ± 1.09 %ID/g) and SAMR1 mice (7.23 ± 1.21 %ID/g). Conclusion:: This study showed that INER-1577-3 can inhibit tumor cell growth and is one of a few HDACs inhibitors that can penetrate the blood-brain barrier (BBB) and monitor HDAC activities in AD mice. Thus, [18F]INER-1577-3 may be a potent HDACs imaging agent, especially for CNS.

Publisher

Bentham Science Publishers Ltd.

Subject

Radiology Nuclear Medicine and imaging

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3