Detection of Thyroid Nodules with Ultrasound Images Based on Deep Learning

Author:

Yu Xia1ORCID,Wang Hongjie2ORCID,Ma Liyong3ORCID

Affiliation:

1. Department of Ultrasound, Weihai Maternal and Child Health Hospital, Weihai, China

2. Department of Equipment, Weihai Maternal and Child Health Hospital, Weihai, China

3. School of Information Science and Engineering, Harbin Institute of Technology, Weihai, China

Abstract

Background: Thyroid nodules are a common clinical entity with high incidence. Ultrasound is often employed to detect and evaluate thyroid nodules. The development of an efficient automated method to detect thyroid nodules using ultrasound has the potential to reduce both physician workload and operator-dependence. Objective: To study the method of automatic detection of thyroid nodules based on deep learning using ultrasound, and to obtain the detection method with higher accuracy and better performance. Methods: A total of 1200 ultrasound images of thyroid nodules and 800 ultrasound thyroid images without nodule are collected. An improved faster R-CNN based detection method of thyroid nodule is proposed. Instead of using VGG16 as the backbone, ResNet is employed as the backbone for faster R-CNN. SVM, CNN and Faster-RCNN methods are used for thyroid nodule detection test. Precision, sensitivity, specificity and F1-score indicators are used to evaluate the detection performance of different methods. Results: The method based on deep learning is superior to that based on SVM. Faster R-CNN method and the improved method are better than CNN method. Compared with VGG16 as the backbone, RestNet101 backbone based faster R-CNN method achieves better thyroid detection effect. From the accuracy index, the proposed method is 0.084, 0.032 and 0.019 higher than SVM, CNN and faster R-CNN, respectively. Similar results can be seen in precision, sensitivity, specificity and F1-Score indicators. Conclusion: The proposed method of deep learning achieves the best performance values with the highest true positive and true negative detection compared to other methods and performs best in the detection of thyroid nodules.

Funder

Shandong Medical and Health Science and Technology Development Project

Shandong Province Key R&D Program

Shandong Province Natural Science Foundation

Publisher

Bentham Science Publishers Ltd.

Subject

Radiology, Nuclear Medicine and imaging

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3