3D Cascaded Convolutional Networks for Multi-vertebrae Segmentation

Author:

Xia Liu1,Xiao Liu1,Quan Gan1,Bo Wang1

Affiliation:

1. School of Automation, Harbin University of Science and Technology, Harbin 150001, China

Abstract

Background: Automatic approach to vertebrae segmentation from computed tomography (CT) images is very important in clinical applications. As the intricate appearance and variable architecture of vertebrae across the population, cognate constructions in close vicinity, pathology, and the interconnection between vertebrae and ribs it is a challenge to propose a 3D automatic vertebrae CT image segmentation method. Objective: The purpose of this study was to propose an automatic multi-vertebrae segmentation method for spinal CT images. Methods: Firstly, CLAHE-Threshold-Expansion was preprocessed to improve image quality and reduce input voxel points. Then, 3D coarse segmentation fully convolutional network and cascaded finely segmentation convolutional neural network were used to complete multi-vertebrae segmentation and classification. Results: The results of this paper were compared with the other methods on the same datasets. Experimental results demonstrated that the Dice similarity coefficient (DSC) in this paper is 94.84%, higher than the V-net and 3D U-net. Conclusion: Method of this paper has certain advantages in automatically and accurately segmenting vertebrae regions of CT images. Due to the easy acquisition of spine CT images. It was proven to be more conducive to clinical application of treatment that uses our segmentation model to obtain vertebrae regions, combining with the subsequent 3D reconstruction and printing work.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province

Publisher

Bentham Science Publishers Ltd.

Subject

Radiology, Nuclear Medicine and imaging

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3