3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation

Author:

Sahai Nitin1ORCID,Gogoi Manashjit1,Tewari Ravi Prakash2

Affiliation:

1. Department of Biomedical Engineering, North-Eastern Hill University, Shillong-793022, Meghalaya, India

2. Department of Applied Mechanics, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj-211004, Uttar Pradesh, India

Abstract

Aims: Our aim is to develop 3D printed chitosan-gelatin-alginate scaffolds using a costeffective in house designed 3D printer followed by its characterization. To observe chondrocyte differentiation on 3D printed scaffolds as part of scaffold application. Background: Cartilage is considered to be a significant tissue in humans. It is present in between the rib cage, the lobe of the ear, nasal septum in the form of hyaline cartilage, in between ribs costal cartilage, intervertebral discs in the form of fibrocartilage, meniscus, larynx, epiglottis and between various joints of bones. To replace or repair damaged tissues due to disorders or trauma, thousands of surgical procedures are performed daily. 3D printing plays a crucial role in the development of controlled porous architectures of scaffolds for cartilage tissue regeneration. Advancement in 3D printing technology like inkjet, micro- extrusion in 3D bioprinting, Laser-assisted 3D Bioprinting (LAB), stereolithography combination with biomaterials plays a crucial role in the quick development of patient-specific articulating cartilage when need in a short period frame. Objective: Our objective is to develop different compositions of chitosan-gelatin-alginate composite hydrogel scaffolds with controlled porosity and architectures with the application of 3D printing and observe the growth of cartilage on it. To achieve as proposed, an in-house 3D paste extruder printer was developed, which is capable of printing porous composite chitosan hydrogel scaffolds of desired architecture layer by layer. After the characterization of 3D printed chitosan composite scaffolds, the differentiation of chondrocyte was observed using hMSC. Methods: In present paper process for the development of chitosan-alginate-gelatin composite hydrogel, 3D printing, morphological characterization, and observation for differentiation of chondrocytes cells on 3D printed chitosan composite hydrogels is presented. The present study is divided into three parts: in first part development of composite chitosan-alginate-gelatin hydrogel with the utilization of in house customized assembled paste extruder based 3D printer, which is capable of printing chitosan composite hydrogels. In the second part, the characterization of 3D printed chitosan composite scaffolds hydrogel is performed for evaluating the morphological, mechanical, and physical properties. The prepared composite scaffolds were characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction(XRD), Scanning Electron Microscopy SEM, swelling property, mechanical testing, porosity, etc. In the last part of the study, the differentiation of chondrocytes cells was observed with human Mesenchymal Stem Cells (hMSC) on 3D printed scaffolds and showed positive results for the same. Results: Stereolithography (STL) files of 3D models for porous chitosan composite were developed using Computer-Aided Design (CAD) and printed with a hydrogel flow rate within the range of 0.2-0.25 ml/min. The prepared scaffolds are highly porous, having optimum porosity, optimal mechanical strength to sustain the cartilage formation. The 3D printed chitosan composite scaffolds show supports for the differentiation of chondrocytes. The above study is helpful for in-vivo regeneration of cartilage for patients having related cartilage disorders. Conclusion: This method helps in regeneration of degenerated cartilage for patient-specific and form above experiment we also concluded that 3D printed chitosan scaffold is best suited for the regeneration of chondrocyte cells.

Publisher

Bentham Science Publishers Ltd.

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3