Affiliation:
1. Department of Information Technology, College of Computer, Qassim University, Buraydah,Saudi Arabia
Abstract
Objective:
Automatic prediction of COVID-19 using deep convolution neural networks
based pre-trained transfer models and Chest X-ray images.
Methods:
This research employs the advantages of computer vision and medical image analysis to
develop an automated model that has the clinical potential for early detection of the disease. Using
Deep Learning models, the research aims at evaluating the effectiveness and accuracy of different
convolutional neural networks models in the automatic diagnosis of COVID-19 from X-ray images
as compared to diagnosis performed by experts in the medical community.
Result:
Due to the fact that the dataset available for COVID-19 is still limited, the best model to
use is the InceptionNetV3. Performance results show that the InceptionNetV3 model yielded the
highest accuracy of 98.63% (with data augmentation) and 98.90% (without data augmentation)
among the three models designed. However, as the dataset gets bigger, the Inception ResNetV2
and NASNetlarge will do a better job of classification. All the performed networks tend to over-fit
when data augmentation is not used, this is due to the small amount of data used for training and
validation.
Conclusion:
A deep transfer learning is proposed to detecting the COVID-19 automatically from
chest X-ray by training it with X-ray images gotten from both COVID-19 patients and people with
normal chest X-rays. The study is aimed at helping doctors in making decisions in their clinical
practice due its high performance and effectiveness, the study also gives an insight to how transfer
learning was used to automatically detect the COVID-19.
Funder
Qassim University-Deanship of Scientific Research
Publisher
Bentham Science Publishers Ltd.
Subject
Radiology, Nuclear Medicine and imaging
Reference36 articles.
1. World Health Organization (WHO) announces COVID-19 outbreak a pandemic. 2020. Available at: https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus- covid-19/news/news/2020/3/who-announces-covid-19-outbreak-a- pandemic
2. Information for Healthcare Professionals about Coronavirus (COVID-19). 2020. Available at: https://www.cdc.gov/coronavirus/2019-ncov/hcp/index.html
3. Pham Q.V.; Nguyen D.C.; Hwang W.J.; Pathirana P.N.; Artificial intelligence (AI) and big data for coronavirus (COVID-19) pandemic: A survey on the state-of-the-arts. IEEE Access 2020,99,1-1
4. Ai T.; Yang Z.; Hou H.; Zhan C.; Chen C.; Lv W.; Tao Q.; Sun Z.; Xia L.; Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology 2020,296(2),E32-E40
5. Wang L.; Wong A.; COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-Ray images. arXiv preprint 2003
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献